Team RoBIU

Team Description Paper for RoboCup 2012 Humanoid KidSize League

Gilad Arnon, Naama Avrahami, Amir Ben Ami,
Guy Cohen, Sarit Dauber, Idan Farin, Amir Kliner, Alon Ludmer,
Yoav Miller, Efrat Taitelbaum, Israel Zilbershmidet
Rafi Amsalem and Dr. Eli Kolberg

Bar-Ilan University, Faculty of Engineering
52900 Ramat-Gan, Israel
E-mail: RoBIU.RoboCup@gmail.com
Web: http://www.eng.biu.ac.il/ millery /robocup

Abstract. This paper presents the hardware and software layers of the
kidsize humanoid robots of RoBIU team. Team RoBIU was founded in 2010,
consists of only undergraduate students from Bar-Ilan University Faculty of
Engineering. The paper describes the robot’s specifications and the main
aspects of our project, including real-time image processing and object de-
tection, sensors and camera based localization, high-level behaviors imple-
mentation and robot agents inter-communication.

1 Introduction

RoboCup 2012 signifies a milestone for team RoBIU. After in the last year the team[1]
(formerly known as BI-Forward) couldn’t participate in RoboCup 2011 due to security
constraints regarding travel to Turkey, team RoBIU hopes to be the first to accomplish
that. This year an improved system was assembled, mainly by the use of a more powerful
robot, in the aspects of robustness, processor performance and better sensors. RoboCup
2012 will be a great setting to study our enhanced software and team performance.
The RoBIU team is made up entirely by undergraduate senior students, as a part of their
final year project, under the academic supervision of Mr. Rafi Amsalem and Dr. Eli
Kolberg. The purpose is to let the students experience with a large-scale project, which
incorporates challenges, such as strategics orientation, coping with deadlines, mediating
between target groups and managing the development of software-intensive systems.



2 Robot Overview

2.1 Mechanical Design

The robot we use is the DARwIn-OP [2]. Fig. 1 shows the dimensions of the robot. The
motion mechanism consists of 20 degrees of freedom, divided as 6 DoF for each leg, 3
DoF for each arm and 2 DoF for the head. The robot’s weight is 2.8 kg and its height is
45.5 cm. The robot’s walking speed is optimized for real-time adjustments maintaining

fast and stable locomotion.

271.0 mm (10.7 in)

z
-
T
E
2
<
=

455.0 mm (17.9 in)

219.5 mm (8.6 in)

66.0 mm (2.6in)

104.0 mm (4.1 in)

Fig. 1. DARwIn-OP’s dimensions and weight.

2.2 Actuators

The robot uses Robotis’” RX-28M Dynamixel motors[3]. Each servo motor has its own
microcontroller, allowing for a network of servos to be controlled by a single micropro-
cessor via a TTL network. The RX-28M weights 72g, has a resolution of 0.29 degrees
and a gear reduction ratio of 193:1. The RX-28M provides the feedback of temperature,
position, load and input voltage, indicating an an overheat and emergency shutdown
when the temperature exceeds its range.

2.3 Sensors

The robot is equipped with a 3-axis LYPR540AH gyroscope and a 3-axis ADXL335
accelerometer that enable a robust and stable locomotion. The robot has a 2MP HD
Logitech C905 Camera, with a 640x480 resolution, providing a visual information that is
used for object detection and localization. The robot also uses pressuremeters - 4 FSRs
in each foot.



2.4 Controller

The main controller of the robot is a CompulLab FitPC2i board featuring a 1.6 GHz
Intel Atom Z530 processor with 1GB of RAM. The FitPC2i has a WiFi enabled for
team communication.

As mentioned before, the robot also has a microcontroller board - the CM-730. The
CM-730 is a management controller, with an ARM CortexM3 processor. The CM-730
connects between the servos and the FitPC. The CM-730 is connected to the FitPC via
a USB port. The camera is connected to the FitPC via a USB port as well.

3 Software

The robot is a complex system which consists of several I/O components (like the cam-
era and the sub-controller). As in a real-time system, all those components must be
controlled and accessed simultaneously. The need for parallel processing is obvious, and
can be achieved by multi-processing or multi-threading. We chose the multithreaded
environment over multiprocessing from following reasons:

e Inter-thread communication is faster.
e All threads within a process share the same memory space.

It should be mentioned that our CPU has only one core which doesn’t allow us to
actually run different code sections in parallel.

The challenges of working in such environment are synchronizing between the threads
and avoiding different threads from being in a critical section at the same time. In order
to keep the threads synced we use unix signals. For example, when the robot falls —
a thread that constantly checks its status signals the Al thread to handle the falling.
Mutual exclusion is obtained using semaphores, which allow only one thread to enter
the CS at the same time.

3.1 Vision

We use the HSV image format[4]. Because the R, G, and B components of an object’s
color in a digital image are all correlated with the amount of light hitting the object, and
therefore with each other, image descriptions in terms of those components make ob-
ject discrimination difficult. Instead, descriptions in terms of hue/saturation/value are
far more relevant. The implementation uses some functions from the OpenCV library|5].

We start our image processing with an image segmentation. This is done in a very
simple way, using the thresholding method. The second part of the vision section is ob-
ject detection. Various algorithms have been tested in the ball detection part, ultimately
we’ve chosen the most efficient one in the aspects of fast computations and accuracy. We
sort the orange bulbs in the image and choose the best matching circle-shaped bulb. The
bulbs are being characterized with several attributes, allowing us to distinguish between



the ball and other orange bulbs. The result is shown in figure 2.

RGB Segmented

Fig. 2. Ball Detection.

The object detection also includes poles and goal detection. These are done with rather
rough algorithms, allowing us to detect the goal and the posts very rapidly at the ex-
pense of small inaccuracies. The Goal Detection can be seen in figure 3.

RGB Segmented

Fig. 3. Goal Detection.

All the information retrieved from the object detection is sent to the localization, in
order to the robot to localize itself in the field. Once an object is detected, the distance
from it is estimated according to the amount of pixels in it. The angle from each object
is also calculated, by the formula:

Horizontal Field of Viewgeq
Horizontal Pixelspizels

Anglegeq = (Object Of fset from Center)pigers* +Head Pan Anglege,

where the fraction in the above formula is a constant, which depends on the camera
properties.



3.2 Localization

The localization is done using Particle Filtering, a.k.a. Sequential Monte Carlo method|[6].
The inputs we use are objects detected by the camera, step tracking and one gyro. By
using the filter, we can make an educated guess of the robot’s location and direction,
relative to the fixed objects in the field (goals, side poles, etc.).

The algorithm goes as follows: M particles represent the robot’s position estimation.
The initial global uncertainty is achieved by randomly generating such M particles (fig.
4-a). Given an image, particles are graded by the angle the pole is seen, and by the
distance. Noise is added to each input (fig. 4-b). After a few iterations, the particles
are converging to the robot’s real location (fig. 4-c). After some more iterations, the
particles are very close to the robot’s real location. Note that some particles (10%)
randomly scattered are added each iteration to the particle sets (fig. 4-d) in order to be
able to handle failures such as robot kidnapping or global localization failures.




Fig.4. Monte Carlo localization with random particles. Each picture shows
a particle set representing the robot’s position estimate (small lines indicate
the orientation of the particles). The yellow particle depicts the mean of
the particles, and the true robot position is indicated by the purple particle.
The pictures illustrate the robot’s global localization in the robocup field.

3.3 Locomotion

In the locomotion section, our biggest concern was the robot stability while moving.
We’ve managed to enhance the robot’s mobility in both aspects: speed and stability.
The way to achieve good results requires many tests which follow every change in the
basic movement configuration. By making the robot to lean forward and bend a little,
we increased its maximal speed without falling. This way we got to a maximal speed of
approximately 40cm per second. Additionally, in the actions field (kicking, coming up
and passing) major improvements were reached. The robustness of the actions is now
higher, while the time to complete each action has been decreased.

3.4 Communication

According RoboCup Soccer Humanoid League rules, the robots may communicate only
via the wireless network provided by the organizers which must support the referee box.
Though sending any transmission from an external computer to the robots is prohibited
(except from the game controller), the robots may communicate with each other at any
time during a game.

Sharing the information about the robots’ location and ball location can be significant
to achieving efficient robotics team. This can be useful while in-game, for example when
a certain robot doesn’t see the ball, he can use other teammate’s information as a guide.
Disseminating information among the robots includes saving a database of knowledge of
the robot itself, and maintaining databases of other robots’ knowledge. Decision making
system takes in account (along many other elements) the information from the other
robots, relying on it according to how accurate and up-to-date the information is.



References

[1] Team BI-Forward, Team Description Paper, RoboCup 2011, Humanoid League.
[2] DARwIn-OP Brochure, http://darwin-op.springnote.com .
[3] Robotis Product Information, http://www.robotis.com .

[4] R. Gonzalez and R. Woods, Digital Image Processing, Third Edition, Pearson Edu-
cation, 2008.

[5] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV
Library, O’Reilly Media, October, 2008.

[6] S. Thrun, W. Bugard and D. Fox, Probabilistic Robotics. MIT Press, 2005.



	Introduction
	Robot Overview
	Mechanical Design
	Actuators
	Sensors
	Controller

	Software
	Vision
	Localization
	Locomotion
	Communication

	References

