
Team RoBIU
Team Description for Humanoid KidSize League of RoboCup 2015

Golman Roman, Elkaras Avraham, Siri Gilad, Yaakov Avia, Schreiber
Elimelech, Waserman Yoni, Spokoini Noam.
Advisors: Druker Itai, Zuckerman Michael

Academic Supervisors: Amsalem Rafi, Abramov Benjamin, and
Dr. Kolberg Eli

Bar-Ilan University, Faculty of Engineering
52900 Ramat-Gan, Israel

Contact: Elimelech Schreiber,
E-mail: lemelech.bi@gmail.com

Web: https://github.com/BIU2015/RoboCUP2015/wiki

Abstract. Team RoBIU was founded in 2010, the team consists of un-
dergraduate students from Bar-Ilan University Faculty of Engineering.
This paper presents an overview description of the hardware and software
layer of the kidsize humanoid robots of RoBIU team. The paper describes
the robot’s hardware specifications and a high level description of the
various software algorithms, including real-time image processing, sta-
bilization, sensors and camera based localization, debug features, robot
agents inter-communication and high-level behaviors implementation.

1 Introduction

This paper describes the Robocup Kid Size League team RoBIU from Bar Ilan
university. The team was founded in 2010 and this is the 4th year in a row the
team is participating the KSL league. Each year the team is assembled with
new undergraduate senior computer engineering students, as a part of their final
year project under the supervision of Mr. Rafi Amsalem, Mr. Beni Abramov
and Dr. Eli Kolberg. The purpose of the Robocup KSL project is (beside the
obvious: academic research) partially, to expose students to a large-scale project
and allow them to gather experience in handling multiple challenges, such as
strategics orientation, coping with deadlines, mediating between target groups
and managing the development of software-intensive systems.

RoboCup 2015 would be a great setting to study our enhanced software and
team performance.



2 Commitment

The RoBIU team hereby commits to participate in the Robocup 2015 Kid Size
League Humanoid competition taking place in Hefaei, China.

The RoBIU team will provide, upon demand, a person with sufficient knowl-
edge of the rules to referee during the competition.

3 Robot Specifications and Hardeware

Robot Specifications, Hardeware, and Sensores are discussed seperately in the
Robot Spcifications document.

4 Software

Our robots are composed of several modules, combined to create a real time
robot soccer player. The software controlling the robots is designed to handle
several tasks simultaneously, so multithreading is essential. The multithreaded
environment allows the delegation of the robot’s authorities (such as State ma-
chine, Vision, Localization etc.) in order to increase efficiency. By using a mul-
tithreaded environment we can use the same memory space for all threads, and
inter-thread communication is faster. The Multi-core i5 processor increases the
gain achieved by multithreading even more, by running the threads on seperate
cores.

4.1 Artificial Intelligence

Artificial intelligence AKA Brain - is the main process of the robot. It’s in charge
of processing all important inputs from other modules, and form a decision as to
the next move, or state. We started by writing a simple Brain which knows how
to find the ball and kick to the opponent’s goal. Then slowly incorporating ad-
ditional factors such as Localization properties, inter-robot communication, and
advanced behavior algorithms, ended up with quite a sophisticated AI program.

4.2 Vision

We use the HSV image format[1]. Image description in terms of it’s RGB color
components make object discrimination difficult, as RGB color components are
correlated with the amount of light hitting the object, and therefore with each
other[2]. Practicaly, what we humans percieve as a certain color, is hard to specify
distinctively in terms of RGB. Instead, HSV color description (hue/saturation/value)
is far more relevant, as the color and intensity fields are described separately and
independently. This color representation is achieved by a non-linear transform



from the RGB, and implemented using some functions from the OpenCV li-
brary[3]. We start our image processing with an image segmentation. This is
done in a very simple way, using the thresholding method.

We developed unique Vission algorithms to deal with various tasks: histogram
normalizer, noise reduction, line&corner detection and classification, and more.

(a) (b)
Fig.1. (a) Lines on noisy field. (b)Lines recognized and outlined.

Each object is detected not only by color, but by shape detection algorithms
as well. By combining the two features we increase object detection and classi-
fication significantly. For instance:

Ball recognition using Hough transform. This year, since the ball is not
uniformly colored, we cannot solely rely on colors to find the ball. So we decided
to use OpenCV function HoughCircles that ”Finds circles in a grayscale image
using the Hough transform” [4]. We are also using the fact that we know the
balls colors, trying to combine them to a whole circle shape. Another feature we
implemented is OnGreen check of the supposed ball, to determine if the detected
circle is above the green field or not. Allowing us to Rule out alien objects (the
crowd for example).

(a) (b)
Fig.2. The new ball specification makes old ball-recognition
color-based algorithms obselete, as 50% of the ball’s color re-
mains undefined. Our new ball-recognition algorithm therefore
combines blurring and background color contrast to create the
most relevant color threshold (a) on which, finally, we aplly shape
detection. (b) Here we see successful recognition in noisy environ-
ment.



Automatic color calibration. In order to use the thresholding method, we
need to know one little thing: What are the HSV threshold’s for different colors?
Of course we can check them in Wikipedia, but this will not work because colors
differ from place to place due to light, object surface, camera, etc. So we needed
a dynamic way to determine the thresholds. To achieve this we made a program
that shows to the user the current stream from the camera, the user selects color
to set and clicks on an object of this color. The program saves the HSV values of
the selected point, and the surrounding pixels- to determine HSV range of the
selected color. Thus allowing the robot to learn the needed threshold’s at every
new location.

Blind Gamma filter. Even in the same room the lighting and shading of
objects can may vary drasticaly, rendering color dependent and lighting sensitive
algorithms unpredictable. In attempt to Deal with such effects we implemented
Automatic Gamma correction filter that compensates for lighting variations ad-
justing and normalizing image brightness, using power-law expression:

Vout = A · V γin (1)

(a) (b)
Fig.3. (a) Lighting saturated image. (b)Gamma-Corrected im-
age.

The main problem of this method is how to automatically determine the
correct gamma for the transformation.There are several scientific papers that
attend to this problem, but most of the solutions involve computation complexity
inadequate for real time purposes, so we are working on a real time blind gamma
correction algorithm.

We also use Gaussian Blur Filter to clean noises before preforming vision
calculations and transformations. It helps the HoughCircles for example, to avoid
false detections.

All information retrieved from the object detection is passed on to the Lo-
calization thread, described later.

Distance. The identification and classification of an object from image in-
put data is much more useful if the distance to this object can be approximated.
We’ve developed, tested, and are currently fine-tuning a method of measuring
object distance from monocular camera input. The method is based on the Pin-
hole Camera Model, and takes into consideration known camera parameters,
variables, and other characteristics of the problem. Once an object is detected,
the distance and angle to it are calculated from the image data.



We have come up with the following transform equations, which transform
pixel values from u,v image plane, to the real world x,y plane, the field of game
in front of our robot:

y = Height · tan(φ+ atan(v/fy)) (2)

x = (u ·Height/fx) · (tan(φ) · (tan(φ+ atan(v/fy)) − tan(φ) + 1)

(1 + tan(φ)2))1/2
(3)

x = Height · tan(φ+ atan(v/fy))) · u/fx (4)

Where : Height- is height of camera from plane. fx, fy- are effective focus
distances of camera lens in the horizontal and vertical direction respectively. φ-
is the angle of camera taken from the vertical axis. Eqn.3 is taken for low φ
values, and eqn.4 for greater φ values, as some terms in eqn.3 become negligible
or irrelevant.

Fig.4. Distance accuracy benchmark (a regular tiled floor).

The angle from each object can be easily calculated from the above x,y real
plane values, but sometimes are preferably calculated by the formula:

αdeg = (Object Offset)pxl ·
Horizontal Angle of V iewdeg

Frame Widthpxl
+Head Pandeg (5)

where the fraction in the above formula is a constant, which depends on the
camera properties.

An article on the subject of Distance by Look-up-table Method, a different
method developed by last-year-team-member Michael Zukerman, is soon to be
published.



4.3 Localization

Localization is the logical approximation of the robots position and orientation
in the playing field space, based on previous knowledge of the field (eg. the
location of goal posts, white lines and exact field dimensions), knowledge of the
dynamic entities on the field (eg. goalie, other robot players and robots own
previous location), and inputs from the robot’s built in sensors (eg. camera, foot
pressure sensors, gyroscopes magnetometers and accelerometers.).

Localization was implemented by means of what is known as Particle Filter,
which is, simply put: Iteratively calculating the likelyhood of many random
localization possible states, ultimately convreging to the true state. This year we
intend to incorporate magnetometer sensor data (compass), hopfuly increasing
stability and robustness of loaclization.

We intend to upgrade our current camera - a webcam quality camera, de-
signed specifically for close proximity imaging of faces, with a higher resolution
camera. Our experience has tought us that trying to identify thin lines at a
distance, with our current imaging hardware, is tricky at best. However, given
reliable inputs, after a number of iterations the particles converge to the actual
robot location(fig. 5-c).

(a) (b)

(c) (d)
Fig.5. Monte Carlo localization with random particles. Each
picture shows a particle set representing the robot’s position es-



timate (small lines indicate the orientation of the particles). The
yellow particle depicts the mean of the particles, and the true
robot position is indicated by the purple particle.
The pictures illustrate the robot’s global localization in the robocup
field.

4.4 Motion and Stability

Motion contains walking behaviors and actions. Dynamixel MX-28 is the robot’s
servo. It lets us use high resolution (4096) engine state. We intend to use the last
years achievements as a starting point, and apply improvements and modifica-
tions to solve existing problems, as well as new ones, as they present themselves
(such as present-year’s new chalenge: grass-walking). We will aplly forward kine-
matic calculation algorithms for control of robot motion and stability.

4.5 Communication

Our robots use a unique message format sent via UDP protocol for inter-robot
comunication, developed last year by the previous team members. We might
apply mild modifications as the need arises.

4.6 Debug and Game Control

To improve our debugging capabilities (in case of crashes and other runtime
errors) we implemented a Log class that is responsible for saving a log of every
important step of our robot control program, so we can closely follow each step
of our program and see what led to every situation the robot got into. We
also made use of time.h class to be able to measure frame rate of our vision
functions and the frequency of our state machine (which is also saved into the
log). We have a real-time debugging console which listens to the robots reports
and displays them on a special UI. The program will help us to understand the
status and localization valuation of each robot, it will also allow the examination
of decision-making processes of each robot.



Fig. 5. Debug Software GUI

5 Conclusion

In this paper we’ve introduced the mechanical structure and software design
of our robot. Although it’s the 4th year Bar Ilan University is competing, all
team members have changed (except for the mentors), so this is our first time
participating in the competition. We look forward to participate in the RoboCup
competition this year, and are determined to play as worthy competitors.

References

[1] R. Gonzalez and R. Woods, Digital Image Processing, Third Edition, Pearson
Education, 2008.

[2] Wikipedia - https://en.wikipedia.org/wiki/HSL and HSV.
[3] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the

OpenCV Library, O’Reilly Media, October, 2008.
[4] http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

http://docs.opencv.org/modules/imgproc/doc/featuredetection.html?highlight =
houghcircleshoughcircles


