
AllemaniACs 2009 Team Description

Daniel Beck and Tim Niemueller

Knowledge Based Systems Group
RWTH Aachen University

Aachen, Germany
{beck, niemueller}@kbsg.rwth-aachen.de

1 Introduction

The increasing performance displayed by the participating teams in the different
leagues and competitions of RoboCup lead to constant changes of the rules
to reflect those improvements the teams made on the one hand and on the
other they intend to drive future development in the particular leagues. In the
Middle Size League the most prominent changes in the recent years have
been the enlargement of the field, which now has twice the size as before, and
the removal of the color markings from the field. Those changes in the rules and
the progress made by other teams make it unavoidable to improve and refine
one’s own approach.

In our case, it became obvious that our old robots equipped with a differential
drive weren’t up to the challenge any more and needed to be replaced by a new
platform. In this paper we give an overview of our current setup, sketch the design
of our software system, and give a concise summary of innovative solutions the
team realized recently. In particular, these are a Lua-based behavior engine,
a kick device which is capable of playing low passes as well as high-kicks, a
reactive, landmark-based approach to the navigation problem, and the extension
of a known localization technique in order to account for the symmetry problem
arising from the removal of the color markings.

2 Hardware Platform

Following the de-facto standard in this league the AllemaniACs hardware plat-
form is omni-directional: the drive system is comprised of three drive chains,
each consisting of a 90 W motor, a reduction gear, and an Omni wheel. This
configuration allows to steer the robot into any direction without any holonomic
constraints. The drive system is completed by a hardware motor-controller which
is connected to the computer over the serial port.

Besides the drive system, the second key-component of an omni-directional
platform is the omni-directional camera which is mounted on the top of the
robot (cf. Fig 1). Here we use a camera which can deliver images with a size of
1000 by 1000 pixels with up to 30 fps. The quadratic size of the image sensor
is especially handy for this application since the maximal distance in which the

(a) (b)

Fig. 1. The AllemaniACs’ robot platform for the RoboCup Middle Size League and
the three-legged pneumatic kicking device.

robot can observe its environment is the same in the forward- as well as in the
sidewards-direction.

Below the omni-directional camera system we have a Bumblebee-2 stereo-
vision camera. The reasons for adding a second camera and a stereo-vision cam-
era in particular are to obtain more precise positional information about objects
in front of the robot (e.g., the ball). The stereo-vision allows to detect and even
recognize objects of higher structural complexity more accurately (e.g., other
robots, humans, or the goals which are not color-coded any more). For more
detailed information about the object detection see Sect. 4.2.

The on-board computers we have on our robots are powerful Mini-ITX com-
puter which are comparable to nowadays desktop machines in terms of equipment
and performance. More precisely, the machines are equipped with a Core2 Duo
processor running at 2 GHz, 2 GB or main memory, and a solid state hard drive.
We opted for flash disks in favour of ordinary hard drives due to their increased
robustness. The batteries which power the complete system are located below
the computer. Here, we have so-called smart battery packs which report informa-
tion about their status over a serial connection. Among the status information
are the remaining voltage, the current, and the temperature. On a single charge
the robot runs with those batteries for up to four hours.

3 Software Architecture

Building on our previous experience we redesigned and reimplemented our soft-
ware framework for the control software. A robot software framework for a Mid-
dle Size League robot must thus be able to work at very high speeds and small
latencies.

The Fawkes robot software framework is written in C++ and runs as a
monolithic process with a main loop which is subdivided into certain stages
(roughly, it implements the sense-think-act loop). The actual functionality (e.g.,
navigation, ball detection, localization, behavior etc.) is implemented in so-called

proc(proc BuildUpPlay,
[?(∗·∗)), % gather information

intercept ball nonblock (Defender , ori(oriFront),
drivemodeSlowAllowBackward),

solve([[goto global(Attacker , [zone(zoneFront),side(SideBall)],
drivemodeModerateForward)],

goto global(Supporter , [zone(zoneMiddle),side(−SideBall)],
drivemodeSlowAllowBackward),

pickBest(var target, [[zone(zoneFront),side(SideBall)],
[zone(zoneMiddle),side(−SideBall)],
[zone(zoneMiddle),side(sideMiddle)]],

pass to(Defender , var target, 3)) %% end pickBest
], 4, f Reward BuildUpPlay) %% end solve

]).

Fig. 2. Build-up Play move for the defender

plugins which can be dynamically loaded at runtime. A plugin consists of a
number of threads. Each of these threads can attach to one of the processing
stages in the main loop. All threads of the same stage are then run concurrently
at the same time, allowing for exploiting the capabilities of multi-core CPUs.
Slower or long running threads can choose to run concurrently to the main loop
to not slow down the whole cycle.

From a developers perspective logical components are defined with certain
inputs and outputs. A plugin then implements one or more of these logical
components. This allows for an efficient design process of the software.

To distribute information across the robot software framework and to connect
the components we follow a blackboard approach. The blackboard is a shared
memory segment which is accessed via well-defined interfaces. These interfaces
are defined in an XML file from which code is generated to enable access to the
memory contents.

Whereas the framework and the low-level plugins are coded in C++ we make
use of the Lua scripting language for programming robots’ basic behaviors (e.g.,
intercept), the high-level agent is programmed in the logic-based programming
language ReadyLog. We specifically opted for those languages because we are
convinced that they are exceedingly qualified for their particular applications in
the context of robot programming.

ReadyLog [1] is a dialect of Golog [2] which is based on the situation
calculus. Besides the usual programming constructs like conditionals and loops
ReadyLog provides nondetermistic constructs that allow the programmer to
leave certain choices open. For instance, the programmer may decide to leave
the choice whether to continue with program p1 or with program p2 open which
is encoded in the program fragment nondet(p1, p2). Those choices constitute
planning problems which are, given a reward function, solved by the decision-
theoretic planner build-in into the language. Since the language Golog has a
formal semantics it is well-suited as a specification language for soccer theory in
order to derive the robots’ behaviors. An example for a specification of a soccer
move can be seen in Fig. 2; for more details we refer the reader to [3].

By means of adaptor plugins Fawkes can exchange data over the Player
[4] network protocol which allows us to connect the control software to the
robot simulator Gazebo [4] (or Stage [4] if a physically correct simulation is not
required) for development and testing purposes. More details on that topic can
be found in [5].

4 Innovations

4.1 Lua-based Behavior Engine

For the agent program we follow a knowledge-based approach with decision
theoretic planning. To make this feasible primitive actions are required, small
execution entities for the robot that can be used during planning.

For this we have added a reactive layer to our software, the behavior engine,
which provides a programming environment for these primitive actions, called
skills. Examples for such skills are “goto position (x, y)” or “intercept the ball”.
The behavior engine employs the Lua [6] scripting language. It is light-weight,
fast, and easy to embed. All libraries and executables required to run Lua code
are less than 200 KB in size and independent benchmarks have shown it as one
of the fastest scripting languages [7, 8]. It has a C API that allows for calling
Lua from C and vice versa.

With this API the Lua environment has been embedded into Fawkes as a
plugin. With an automated wrapper generator code is produced to allow access to
the blackboard from the Lua environment. With this everything that is provided
by a component can be accessed.

Behavior is modelled as hybrid state machines [9], extended to be more ef-
ficient for skills. With this the behavior can be formally specified and graph
visualizations can be generated while the application is running for easy debug-
ging of the behavior.

A scripting language in general is beneficial for programming the behavior
as it frees the behavior designer from many problems like memory management
prevalent in programming environments like C++. Although developing skills
by formal specifications is preferred, using a full-featured scripting language
gives more flexibility and allows for deviating from the formal process to rapidly
prototype behaviors to quickly verify and reject ideas for new behaviors.

With our activities in the RoboCup@Home League and the new Stan-
dard Platform League in mind the behavior engine is designed to be domain-,
platform-, and league-independent. Certain skills developed for the humanoid
Nao robots can be used unchanged on the mid-size robots and vice versa.

4.2 Stereo Vision

In the course of making the field environment less artificial there have been
several profound changes in the recent years: the field was doubled in size, all
color markers have been removed, and one could see rapidly changing lighting

(a) (b)

(c) (d)

Fig. 3. Example of the segmentation of a depth map. Fig. 3(a) shows the color image of
the scene taken from the stereo camera’s right camera. The transformed the depth map
is visualized in Fig. 3(b). In Fig. 3(c) the results of the segmentation of the depth map
according to objects above floor level are shown. The detected obstacles are depicted
in Fig. 3(d).

conditions at the last events. Especially the latter two impose major challenges
on color-based image segmentation techniques. These are often employed during
preprocessing and image in order to detect certain types of objects in the image
based on their color (e.g, the ball, other robots, the field boundaries, etc.).

Under these circumstances we opted to increase the dimension of perception
and integrate a stereo-vision camera into our robots. Here, the plan is to validate
and refine the information which is obtain by means of color detection and
segmentation techniques on basis of the 3-dimensional reconstruction of the scene
as it is provided by the stereo-camera. Certainly, this is only possible for objects
which are in front of the robot and, thus, in the viewing angle of the stereo-
camera.

A first step in this direction has been made. We adapted a segmentation
scheme which was developed for the segmentation of color images [10] for the
segmentation of the depth maps as they are provided by the stereo-camera.
The process of extracting obstacle position from the depth-map is split up in
three steps. At first, the depth map is transformed according to the position and
the view angle of the camera. This results in a height map—each pixel of that
map contains the height above floor level of the object seen at that position (cf.
Fig. 3(b)). Then, the hierarchical segmentation algorithm as it is described in [10]
is run on the height map. On each level of the hierarchy the image is subdivided

into overlapping islands which in turn consist of islands of the underlying level
in the hierarchy. On the lowest level the islands are made up of the pixels of
the images. For neighbouring islands it is checked on each level whether the
given criterion for joining them is fulfilled. Here, the criterion for a join is the
average height of the area covered by the island in question. The result of the
segmentation is a number of islands each covering an area in the image with
roughly the same height above floor level, i.e., each area with an average height
not equal to zero corresponds to a particular obstacle (cf. Fig. 3(c)). Of course,
the stereo-reconstruction of the scene is not perfect and, consequently, there
might be false values as well as so-called unknown regions, regions for which no
depth values could be determined. This is taken care of during the segmentation
process—unknown regions smaller than a certain threshold and unlikely height
values (e.g., negative ones) are simply ignored, for larger unknown regions, up to
a certain extent, the height is interpolated from the surrounding regions. Lastly,
the relative positions for all detected obstacles are determined (cf. Fig 3(d)).

4.3 Reactive Landmark-based Navigation

For the navigation we employ an algorithm which was presented in [11]. It com-
bines the search for an short and safe path with reactive collision avoidance
mechanisms. More precisely, over the set of detected obstacles a Delaunay trian-
gulation is computed. In a Delaunay triangulation two vertices are connected by
an edge if there exists a circle over those two vertices in question and no other
vertices are located within that circle. Intuitively that means that the obstacles
representing the corner points of the triangle the robot is located in are the
obstacles closest to the robot. Obviously, the safest point to pass between two
obstacles is to pass them right in the middles, Consequently, a traversal graph
is constructed by connecting the midpoints of the edges in the Delaunay trian-
gulation of neighbouring triangles. Over that traversal graph we conduct an A∗

search for a path. The evaluation function combines the length of the path with
the clearance between the obstacles that are passed along that path. Thus, it
can be balanced between length and safety of the path. The high dynamics of
the soccer domain is attributed to by recomputing such a path in every cycle.
Additionally, to avoid an imminent collision, a collision-avoidance path to the
next waypoint on the original path is computed using a force field approach.

The dynamic, obstacle-dependent subdivision of the free space leads to a
considerable reduction of the necessary search depth in comparison to grid-based
approaches which divide the space into grid cells with a fixed size. Together with
the low complexity for constructing the traversal graph this makes it tractable
to recompute the path in every cycle and, thus, react to the rapidly changing
environment. An illustration of the algorithm can be seen in Fig. 4.

4.4 Collaborative Localization

Our approach for localizing the robots on the field is based on the standard Monte
Carlo localization algorithm. In the images obtained from the omni-directional

R

T

Fig. 4. (Top row from left to right): Omni-vision image of the scene, white boxes are
the obstacles; undistorted image; the remaining images show a detailed view of the
triangulation over the perceived obstacles, R denotes the robot, T the target. For the
sake of clarity only the nearest obstacles are marked.

camera the white lines on the field are detected by checking for transitions from
green to white and back to green along rays from the center to the outer edges.
The midpoints of the intersection of the ray and the lines are used as samples for
the Monte Carlo localization algorithm; the likeliness of a sample is determined
with respect to the current estimation of the robots’ pose and a model of the
field lines.

Since the color markings on the field have been removed the field is completely
symmetric and a single robot, without any prior knowledge, cannot decide on
which half it is located. Since the robots already exchange information about
detected obstacles and their respective estimation of the ball position we inte-
grate this into the Monte Carlo update. This allows to favor the one of the two
symmetrical positions for which the robot’s own sightings of the ball or other
obstacles conforms with its team-mates’ sightings. Although this ensures that
the localization is consistent within the team it does not yield a solution for
the global localization problem. Therefore, we make the plausible assumption
that at least one robot (e.g., the goalie) can correctly solve the symmetry prob-
lem and thus knows its correct global position. Given that knowledge the global
localization problem can be solved for the complete team.

4.5 Three-legged Pneumatic Kicker and Ball-guidance

We designed our kick device not with the idea in mind to be as powerful as
possible but what we longed for was maximal control over the ball in order to
make well directed passing among the robots possible. Therefore, we mounted
three kick devices on the robots (cf. Fig 1(b)): a stronger kick device in the
middle and to each of its sides another kick device which is mounted at an angle

of roughly 40°. All three kick devices are pneumatic—the central kick device is
powered by a pneumatic cylinder whereas the sides are powered by pneumatic
muscles which allow for a very space-saving design. The central kick device is
intended to do a high-kick; it is strong enough to kick the ball over an opponent
player. The kick devices powered by pneumatic muscles are intend for passing,
they can be triggered conjunctively to play the ball in the front direction or
selectively to play the ball slightly to the left and the right, respectively.

Furthermore, we have a pneumatic-controlled ball-guidance mechanism which
consist of two small arm which can be extended either on the right side of the
kick devices or on the left side. The intention behind this is to keep the ball in
front of the kick devices while driving a curved path, e.g., during a right-turn
the left arm is extended and during a left-turn the left arm is extended.

References

1. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic do-
mains. Robotics and Autonomous Systems, Special Issue on Semantic Knowledge
in Robotics 56(11) (2008) 980–991

2. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: Golog: A logic
programming language for dynamic domains. The Journal of Logic Programming
31(1-3) (April-June 1997) 59–83 Reasoning about Action and Change.

3. Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst, O., Röfer, T., Stolzenburg,
F., Visser, U., Wagner, T.: Towards a league-independent qualitative soccer theory
for robocup. In Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J., eds.:
RoboCup 2004: Robot World Cup VIII. Volume 3276 of Lecture Notes in Computer
Science., Springer (2005) 611–618

4. Gerkey, B., Koenig, N., Vaughan, R., many others: The Player Project.
http://playerstage.sourceforge.net retrieve Jan 30th 2009.

5. Beck, D., Ferrein, A., Lakemeyer, G.: A simulation environment for middle-size
robots with multi-level abstraction. In Visser, U., Ribeiro, F., Ohashi, T., Dellaert,
F., eds.: RoboCup 2007: Robot Soccer World Cup XI. Volume 5001 of Lecture
Notes in Computer Science., Springer (2008) 136–147 ISBN: 978-3-540-68846-4.

6. Ierusalimschy, R., de Figueiredo, L.H., Filho, W.C.: Lua - An Extensible Extension
Language. Software: Practice and Experience 26(6) (Jan 1999) 635 – 652

7. Ierusalimschy, R., de Figueiredo, L.H., Filho, W.C.: The Evolution of Lua. In:
Proceedings of History of Programming Languages III, ACM (2007) 2–1 – 2–26

8. The Debian Project: The Computer Language Benchmarks Game.
http://shootout.alioth.debian.org/ retrieved Jan 30th 2009.

9. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings Logic in Com-
puter Science 1996, IEEE (Jul 1996) 278–292

10. Rehramm, V., Priese, L.: Fast and robust segmentation of natural color scenes. In:
Proceedings of the Third Asian Conference on Computer. Volume 1351 of Lecture
Notes in Computer Science., Springer (1998) 598–606

11. Beck, D., Ferrein, A., Lakemeyer, G.: Landmark-based representations for navi-
gating holonomic soccer robots. In: RoboCup 2008: Robot Soccer World Cup XII.
Lecture Notes in Computer Science, Springer (2008) To appear.

