
The Paderkicker Team
RoboCup 2009

Bernd Kleinjohann, Philipp Adelt, Willi Richert, and Claudius Stern

Faculty of Electrical Engineering, Computer Science and Mathematics,
University of Paderborn, Germany

teamleader@paderkicker.uni-paderborn.de

Abstract. The Paderkickers are a second generation robot soccer team
with roots in automotive technology like automotive-capable microcon-
trollers or communication over CAN bus. Each robot integrates a self-
sustained network of decentralized sensor-/actor-coupling nodes, inter-
nally interconnected and supervised for fail-safe operation. In this paper
we present how we integrate and process the extracted real-time data in
our behavior-based system.

1 Introduction

The Paderkicker RoboCup group [1] consists of seven players (Fig. 1) that al-
ready participated successfully in the RoboCup world championships 2006 in
Bremen as well as in the GermanOpen competitions in 2004–2008. This second
generation improves upon the first RoboCup player generation with omniwheels,
better vision capabilities and a more distributed internal design. Started as a

Fig. 1. Field players Fig. 2. Aluminium frame
construction

student project team for graduate students in 2001, the project has a strong em-
phasis on the education of students of the Unversity of Paderborn. Most students



come from computer science centric courses with some coming from mechanical
or electrical engineering. They work in specialized teams on hardware, software
and HW/SW codesign issues. In an initial seminar the students delve into se-
lected topics of the RoboCup domain. Afterwards the smaller teams have to
carry out self-chosen topics in the Paderkicker area. Team leaders are Bernd
Kleinjohann, Philipp Adelt, Willi Richert and Claudius Stern.

Altogether about 125 students have participated in this project team over the
years and thus collected experience how to combine real-time embedded systems
with intelligent behavior. Another offering are two courses ”Embedded systems”
and ”Intelligence in embedded systems”, held for master students in computer
science. In addition to education, the research interests comprise embedded real-
time architectures [3, 13–16, 18], real-time vision [14–16, 18] and visualization [6,
5], learning and adaptation from limited sensor data, skill learning and meth-
ods to propagate learned skills and behaviors in the robot team [12, 11, 10, 9, 8,
4]. However, our goal is not to carry out research for specific solutions in the
robotic soccer domain, but to use and test advanced techniques from different
research projects. The Paderkicker platform serves as a testbench for the collab-
orative research center 614 (SFB 614) and priority program organic computing
(SPP OC 1183, both funded by the Deutsche Forschungsgesellschaft). Further-
more, the knowledge in vision, motion and object tracking has been used in the
AR PDA (Bundesministerium für Bildung und Forschung) project [7]. We will
now introduce the architecture of the field players.

2 Robot outline

The current generation of the Paderkicker robots is equipped with an omnidi-
rectional drive which enables the robot to do translational and rotational move-
ments simultaneously. This is a great advantage over the prior generation that
featured a differential drive with two driven wheels. Here a four wheel omni-
directional drive is used instead of a three wheel one. The construction of the
wheel suspension ensures that all four wheels are pressed onto the ground which
leads to enhanced stability.

Besides the driving system, the ball handling system has been redesigned
from scratch. The ball handling system consists of two main components: the
ball kicking system and the dribbling system. The previously used mechanical
kicking system has been replaced by an electromagnetic solenoid which provides
more control over the kicking power and reduces the actuation latency. The ball
dribbling system has been redesigned to be more robust concerning collisions.
All servo motors have been mechanically decoupled with rubber blocks so that
even hard collisions will not harm the servos with excessive mechanical shocks.

The same mechanical decoupling has been applied to the servos of the active
vision system to tolerate collisions with high kicked balls. In contrast to om-
nivision systems that are currently used by many other teams, three individual
pan-tilt cameras are used in the vision system. Each camera may independently
focus and track a different object of interest like ball, goal or other robots.



3 System design

In this section the structure of the Paderkicker robot will be shown. First, the
functional architecture will be described. Then we will show how this logical
structure maps onto a hardware structure. After the description of the underlying
structures, the behavior system as well as the vision system will be introduced.

3.1 Functional architecture

During the system design process, four main functional units were identified
(vision, driving, ball handling and behavior) and designed in a modular way. A
robot of the Paderkicker team consists of a behavior module, the vision module,
the driving module, and the ball handling module. The function of the last three
is self-explaining by their respective names. The behavior module is the topmost
module in a robot’s hierarchy. It controls the robot’s overall behavior.

The different modules are realized in a distributed way as described below.
All components communicate with a message format which is used in the entire
system independent of the respective medium for communication.

The functional units were further divided into sub-modules as depicted in
Figure 3. This structure allows the independent development of the different
functional units. Furthermore, the functional units were designed to work au-
tonomously on their own presenting an already abstracted interface to the rest of
the system. A dedicated interface sub-module manages the communication and
merges data. This hierarchical structure enables the functional unit ”Behavior
module” to act on a very high level of abstraction.

As an example, the driving module is designed to work autonomously and
part of the robot’s low-level behavior has been mapped to it. Distributing the
drive-control task to a group of sub-modules instead of using only one monolithic
module leads to more flexibility and robustness. The sub-modules within are
realized on individual microcontroller boards working as a distributed system.
Each microcontroller board realizes an individual motor controller and odometry
data logger with a short measurement-control latency and therefore can react
very fast. Each board also incorporates an emergency handling unit which leads
to a more robust behavior of the whole driving module.

3.2 Hardware architecture

The functional structure described above is mapped onto a hardware architecture
as depicted in Figure 4. The central processing unit is a Intel Core Duo PC board
running Linux. The vision algorithms and the behavior system are realized here.
The Mini-ITX board is equipped with a Mini PCI wireless LAN card and handles
team communication.

As described above, the modules for ball handling and driving are divided into
sub-modules. These sub-modules are realized on microcontroller boards equipped
with an Atmel microcontroller which comes with an on-chip CAN bus interface.
Groups of microcontroller boards communicate over CAN with the members of



Behavior module

Driving module Ball handling module

Vision module

Coordinator

Wheel
controller

A
bs

tr
ac

t i
nt

er
fa

ce

Central behavior Behavior
Sub-module

Coordinator

Ball handling
controller

Vision coordinator Video
processing

Fig. 3. Paderkicker hierarchical module structure

Fig. 4. Paderkicker hardware architecture



the according group. One dedicated microcontroller board in each group manages
the communication with the central Mini-ITX board over a USB connection.

4 Behavior based system

The actual version of the behavior system is realized as a parallel distributed
software system (Figure 5), where parallel running processes are responsible for
the dedicated functional hardware units vision, driving, ball handling (Figure 3).
In addition, a new timing concept now allows the different subsystems like the
above mentioned to run at different cycle duration. Using a double buffered
shared memory approach it is no problem if e.g. the cycle time of the vision
system increases because the analyzed image contains more detectable objects
than usual or if the ball handling component has to run at a higher frequency
than the driving component.

Particle filter Low-level vision Rule system

Brain

Active Vision Drive control Ball handling

Hardware

Router

While (true):
sync period
copy input
compute
copy output

sync.

sync.

While (true):
sync period
copy input
compute
copy output

sync.

sync.

While (true):
sync period
copy input
compute
copy output

sync.

sync.

U
S

B

TCP/IP

Internal communication

Roller Camera servos Drive system

Fig. 5. Asynchronous architecture for the behavior module



The architecture’s design is driven by the need of the sub-modules Active
Vision, Driving, and Ball Handling to run at different sample rates. In the for-
mer architecture all the functionality was done in the same module at the same
speed. The problem was that functionality that needs to run at a high speed
got at some point corrupted data from modules running at slower speed, which
lead to unpredictable behavior in some cases. To avoid this, at first the different
functionality was identified and regrouped in separate sub-modules. Then we in-
troduced a double-buffered communication mechanism that separates the actual
data on which the individual modules are working on from the communication
process.

Each sub-module has its own cycle. The sub-module’s output is is either
new data for the other modules or part of the final action which first has to be
sent to the hardware via the Router (Figure 3). All sub-modules are running
concurrently.

5 Vision system

The vision system also has been designed using the paradigm of hierarchical
distribution. The vision systems span four levels of abstraction, beginning with
the low-level vision based on an optimized algorithm for low latency real-time
color segmentation [17]. The original algorithm has been adapted to run on a PC
under an ordinary Linux system. Three digital FireWire cameras are mounted
on pan-tilt units to cover the whole 360◦ view. Each camera is handled by an
independent task doing the low-level image processing. On the next level of
hierarchy the outputs of these tasks are merged into a robot-centric view of
the surrounding objects and landmarks. Figure 6 shows a visualization of the
particle filter. Each triangle indicates a hypothesis of the robot’s position with
the hollow triangle being the resulting position estimation of the robot in the
world coordinate system. An abstract interface is presented to the next level of
hierarchy enabling the user of the interface to specify e.g. scan modes of the
cameras.

The next level of abstraction includes two particle filters [2] and a special-
ized control module. One particle filter estimates the robot’s position relative to
known landmarks. The second particle filter estimates the position of the ball
relative to the robot. The control module again presents an abstract interface to
the next level of abstraction. Using this interface two views are accessible. One
“global view” with global world coordinates including all absolute coordinates of
objects and landmarks. However, the second view is robot-centric using relative
coordinates.

The behavior based system descibed in Section 4 is located on the highest
level of abstraction. A dedicated module within this system takes care about the
behavior of the underlying vision system, e.g. which part of the field is to be
examined or whether the ball has to be tracked.

Compared to systems using an omnivision camera [19], on our system the
resolution is higher for a given viewing direction. Furthermore the system allows



Fig. 6. Visualization of the particle filter and the robot’s perceived artefacts (dots).

the over-sampling of a specified region of interest. Due to the constant usage
of abstraction throughout the system this is done autonomously, e.g. for the
position of the ball. This enables the system to recognize even distant objects
that would be indistinguishable in a typical omnivision setup with only one fixed
camera.

6 Coordination of functional units

The architecture does not impose limits upon the way data is exchanged between
functional units. Most units will work asynchronously regarding each other and
can work in a time-triggered or event-triggered manner. An example for an
asynchronous time-triggered operation are the cameras attached to the vision
system that will deliver data in periodic intervals that cannot practically be
synchronized with the rest of the system. The high-level behavior system is
running at a different rate unsynchronized to the cameras. In contrast, sensors
like a ball detection sensor can trigger event processing and event messages that
are non-deterministic in their timing.

To bridge the gap between such different execution semantics, an abstraction
layer is introduced. It decouples the communication of the unit. Double buffering
with atomic copying is used to ensure integrity for data transfers. Depending on
the type of data, new data either is queued or overwrites an old value for a
last-recently-received type of information.



7 Learning in Teams

One purpose of our Paderkicker soccer team is the investigation of appropriate
means to propagate learned knowledge in teams of robots [9, 8, 4]. The learned
knowledge can be on the one hand low-level skills, and on the other hands high-
level strategies making use of those skills. We have developed an approach by
which a robot is able to learn skills most natural to its own morphology by
developmental self-exploration. This is a learning behavior also found in early
childhood. Together with the learned skills the robot also learns the means to
classify observed behavior from other robots. This data is then processed to
improve the strategy [11]. As every robot has a different perception stream the
skills will be different within the robot team. Nevertheless, they are able to
imitate each others’ strategies thus solving easily the correspondence problem
often found in imitation literature and speeding up the overall learning effort [12].

8 Conclusion

With the architecture described in this paper we have gradually improved our
robot team. With our new design for the goal keeper, team support, and our
enhanced real-time capabilities for the vision module we believe that our robot
team is a robust platform that is able to keep up with the competing RoboCup
teams this year.

Furthermore, the platform reflects our educational concept. Master/diploma
students in computer science (with emphasis on embedded systems) and mas-
ter/diploma students in “Ingenieurinformatik” (combination of computer science
and electrical or mechanical engineering) are educated in computer science so-
lutions suitable for engineering problems especially in the automotive domain.

Acknowledgement We thank Matthias Schmitz, Alexander Jungmann, Jan
Schulte-Landwehr, Bastian Nordmeyer, and the numerous students whose work
has taken the project forward. We also would like to express our gratitude to
our C-LAB colleagues for bearing our experiments.

References

1. The Paderkicker Team, 2009.

2. M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on parti-
cle filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing,
IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE
Transactions on], 50(2):174–188, Feb 2002.

3. Bernd Kleinjohann, Lisa Kleinjohann, Willi Richert, and Claudius Stern. Integrat-
ing autonomous behavior and team coordination into an embedded architecture.
In Pedro U. Lima, editor, Robot Soccer, chapter Integrating autonomous behaviour
and team coordination into an embedded architecture, pages 253–280. Pro Litera-
ture Verlag / ARS, December 2007.



4. Markus Koch, Willi Richert, and Alexander Saskevic. A self-optimization approach
for hybrid planning and socially inspired agents. In Second NASA GSFC/IEEE
Workshop on Radical Agent Concepts, 2005.

5. Rafael Radkowski, Jürgen Gausemeier, Bernd Kleinjohann, Willi Richert, Philipp
Adelt, and Henning Zabel. Augmented reality to support the testing of autonomous
systems by the example of soccer robots. In 53. Internationales wissenschaftliches
Kolloquium, volume -. Technische Universität Ilmenau, Technische Universität Il-
menau, 8 - 12 September 2008.

6. Rafael Radkowski, Willi Richert, Henning Zabel, and Philipp Adelt. Augmented
reality-based behavior-analysis of autonomous robotic soccers. In IADIS Interna-
tional Conference of Applied Computation, Algarve (Portugal), 2008.

7. Christian Reimann. Kick-Real - a mobile mixed reality game. In ACE2005, ACM
SIGCHI International Conference on Advances in Computer Entertainment Tech-
nology, 2005.

8. Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Evolving agent societies
through imitation controlled by artificial emotions. In M. Huang, X.-P. Zhang, and
M. Huang, editors, ICIC 2005, number 3644 in LNCS, pages 1004–1013. Springer-
Verlag Berlin, 2005.

9. Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Learning action sequences
through imitation in behavior based architectures. In Systems Aspects in Organic
and Pervasive Computing - ARCS 2005, number 3432 in LNCS, pages 93–107.
Springer-Verlag Berlin, 14 - 17 March 2005.

10. Willi Richert, Olaf Lüke, Bastian Nordmeyer, and Bernd Kleinjohann. Increas-
ing the autonomy of mobile robots by on-line learning simultaneously at different
levels of abstraction. In International Conference on Autonomic and Autonomous
Systems (ICAS’08). IEEE Computer Society, March 2008.

11. Willi Richert, Oliver Niehörster, and Markus Koch. Layered understanding for
sporadic imitation in a multi-robot scenario. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS’08), Nice, France,
2008.

12. Willi Richert, Ulrich Scheller, Markus Koch, Bernd Kleinjohann, and Claudius
Stern. Integrating sporadic imitation in reinforcement learning robots. In IEEE
International Symposium on Approximate Dynamic Programming and Reinforce-
ment Learning (ADPRL’09), 2009.

13. Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann. Hierarchi-
cally distributing embedded systems for improved autonomy. In Proceedings of
the Distributed Parallel Embedded Systems Workshop (DIPES), Distributed and
Parallel Embedded Systems, 7 - 10 September 2008.

14. Dirk Stichling. VisiTrack - Inkrementelles Kameratracking für mobile Echtzeitsys-
teme. PhD thesis, Universität Paderborn, Fakultät für Elektrotechnik, Informatik
und Mathematik, 2004.

15. Dirk Stichling and Bernd Kleinjohann. CV-SDF - a model for real-time computer
vision applications. In IEEE Workshop on Application of Computer Vision. IEEE,
December 2002.

16. Dirk Stichling and Bernd Kleinjohann. Low latency color segmentation on embed-
ded real-time systems. In Bernd Kleinjohann, K.H. Kim, Lisa Kleinjohann, and
Achim Rettberg, editors, Design and Analysis of Distributed Embedded Systems.
Kluwer Academic Publishers, 2002.

17. Dirk Stichling and Bernd Kleinjohann. Low latency color segmentation on embed-
ded real-time systems. In Design and Analysis of Distributed Embedded Systems.
Kluwer Academic Publishers, November 2002.



18. Dirk Stichling and Bernd Kleinjohann. Edge vectorization for embedded real-
time systems using the CV-SDF model. In Proceedings of the 16th International
Conference on Vision Interfaces (VI 2003), June 2003.

19. Felix v. Hundelshausen, Sven Behnke, and Raúl Rojas. An omnidirectional vision
system that finds and tracks color edges and blobs. Lecture Notes In Computer
Science, 2377:374–379, 2002.


