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Abstract. The 1. RFC Stuttgart robot soccer team is used as a testbed
for multi-agent software architecture principles in dynamic real time do-
mains. The current research activities focus on a completely new design
of a midsize robot, the enhancement of machine learning algorithms for
strategies, new vision methods and a context-aware visualization.

1 Introduction

Since 1999, the 1. RFC Stuttgart - formerly known as the CoPS-Team - success-
fully took part in RoboCup tournaments. The research objectives in the past
year focused on the development of a completley new midsize robot to enhance
the overall performance, remove certain hardware design problem and efficiently
control robot’s movements [RLS+07], [OSBL05] , [OSL05]. Moreover the rein-
forcement learning approach of basic behaviors presented last year was enhanced
to work on a higher level with strategies. Further work was done on the field of vi-
sion, context-aware error visualisation and multi-agent task allocation [LSK+08].
Especially on the field of task allocation the work from the past years could be
continued e.g. by improving the mathematical method of selection equations
[LSZ+07], [SSL+05]. All that work contributes to the continuing research in the
field of agent behavior modeling [ZLB+06], situation recognition/learning, dis-
tributed world models [BKLL03] and multi-agent systems [KBZ+08], [BKZ+08].

The paper doesn’t describe all new innovations, but only focuses on some
major issues: The development of the new midsize robot platform (chapter 2),
the enhancement of machine learning algorithms for strategies (chapter 3), new
vision methods for recognizing arbitrary balls (chapter 4) and a context-aware
visualization for monitoring robot and team behavior efficiently (chapter 5).
Finally chapter 6 concludes.

2 Development of a new midsize robot platform

The 3D drawing of the new model of the RFC robot which is designed and
constructed by the department of Image Understanding of the University of
Stuttgart for the RoboCup competitions is shown in figure 1. The robot has
four wheels, each driven by a brushless DC motor. The electromagnetic kicker
of the robot allows to shoot the ball with adjustable power.



Fig. 1. 3D drawing of the RFC robot model 2009

The distributed control architecture which is used in the RFC robot enables
the computer on the robot to delegate a number of control and data acquisition
tasks to microcontroller based modules which are mounted on the robot. These
tasks include the controlling of the actuators and the measuring of the output
signals of the sensors. Though the delegated tasks can be performed indepen-
dently, the communication between the robot’s computer and the microcontroller
based modules is essential. The software which controls the whole behavior of
the robot in its environment, generates the commands which have to be sent to
the microcontrollers through a data communication link. The microcontrollers
should also be able to send feedbacks, e.g. the sensor measurements or the status
of the microcontroller modules to the computer of the robot. As a data commu-
nication link CAN-bus is used. It establishes a connection between the computer
and the microcontroller based modules of the RFC robot. The schematic of the
distributed control system of the RFC robot is shown in figure 2. As shown in
the figure, microcontroller based modules are used in the RFC robot as follows:

– four motor controller modules, each controls a brushless DC motor
– a microcontroller based module for controlling the electromagnetic kicker
– a microcontroller based module for reading the compass sensor
– a microcontroller based module for displaying the information on a LCD



Fig. 2. Schematic of the distributed control system of the RFC robot consisting of 8
nodes on the CAN bus

3 RL-Methods for high-level decision making

Using reinforcement learning methods, in particular model-free temporal differ-
ence algorithms, it is possible to improve the behaviour of the robot by learning
from its own experiences. With a modification of our existing RL-framework
[ZKR+08] we are now able to use our approach not only for tactical lower lev-
els (e.g. for learning optimal movement behaviours) but also for more complex
decision-makings on higher strategical levels. For this improvement we modified
the RModeler-Module to handle with the needed state-strategy-vectors. Thus
the obsolete set of possible actions a (needed for low-level-decisions) is replaced
by a predefined fixed set of allowed strategies S = {σ1, σ2, ..., σn}. In contrast
to the previous version of our framework and due to the use of model free ap-
proaches, we drop the calculation of values for (s,a)-pairs (s = state, a = action)
and calculate now the expected reward for each (s, σ) − pair. Both the calcu-
lation of the reward for each pair according to the experience and the selection
of the best strategy for the current state (using ǫ-greedy-policys), is done on-
line during the game via our modified RL-framework-approach (see figure 3).



Because of the fact that online-learning (during the game) is very critical in

Fig. 3. Architecture of modified Reinforcement Learning System.

terms of time, it is important to keep the possibility of a full exploration of
our new state-strategy-space in time. This is why a small state-strategy-space is
necessarily needed. In the current configuration we use three possible states and
three different strategies. Thus the state-strategy-space would consist of nine el-
ements. But for an additionally minimization, the state-strategy-space can also
be limited in a way that only four reasonable state-strategy combinations will
be allowed in the selection. Depending on the oppenent team and due to the
flexibility of this approach we will extend the state-strategy-space in the future
to up to six states and up to six different strategies.

The states we use for selecting the best strategy will be identified by a special
helping-function H. The function H is also used to do a coarse generalization
of the input-sensor-values. Thereby H holds a datastructure of the simplyfied
playing field (only of the opponent half), which divides the playing field into a
number of m freely definable tiles. Thus each tile is equivalent to one analogous
state.

For the calculation of the reward of the (s, σ)−pairs, the reward-function (im-
plemented in the RCritic-Module) will use the sensor-information of the World-
Model(WoMo). It is specified as follows: An episode runs for the whole time
during the robot has the ball or tries to shot a goal. If the robot loses the ball,
or dribbles out of the field or missed the goal the robot will be punished. In case
of a successful goal-shoot the robot will be rewarded accordingly.

As usual the RPolicy-Module manages the policy locally on each robot. The
policy is needed to realize a fast mapping of each state s to the best strategy σ∗.
If a better strategy has been explored during the game by one robot the new
policy is distributed to all the other robots.



4 Vision

4.1 Recognition of arbitrary balls

The RFC Stuttgart has developed a novel method for ball detection to deal with
the challenge of recognizing arbitrary colored balls. The obsolete color segmen-
tation based algorithm has been replaced by a 2-phase method. In phase 1 the
image is scanned for circles in a predefined range of radii. In phase 2 features of
each circle are extracted for comparison with features of the calibrated ball. For
each phase several algorithms have been tested to achieve the individual require-
ments of its phase. The Standard Hough transform for circles [KBS75], the 2-1
Hough transform [YPIK90] and the generalized symmetry transform [RWY95]
were reviewed for phase 1, SIFT features [Low99] and color histograms [SB91]
for phase 2. In the 1st phase the most accurate result was obtained by the gen-
eralized symmetry transform. Due to real time constraints during the game and
quite good results of the Standard Hough transform in less amount of time the
generalized local color symmetry was used for the non time critical calibration
step and the Standard Hough transform during the game. The best results for
the 2nd phase are achieved by color histograms. Altogether the process of the
arbitrary ball detection is as follow:

Calibration (see figure 4)

– Phase 1: Find a circle (the ball) in a predefined region of interest by gener-
alized symmetry transform.

– Phase 2: Extract color histogram of this circle

Fig. 4. Calibration step; perspective camera; left: generalized symmetry transform;
middle: 2-1 Hough transform; right: Standard Hough transform

During Game

– Phase 1: Find all circles by Standard Hough transform
– Phase 2: Extract color histogram for each circle and compare it with the

color histogram of the calibrated ball

The arbitrary ball detection was tested with seven different balls, three different
distances (3m, 5m and 7m, see figure 5) and the usage of two camera systems
(omnidirectional and perspective). We were able to detect all balls with the



perspective camera in each tested distance. With the omnidirectional camera we
were able to detect every ball in 3m and 5m. In a distance of 7m the probability
of success is 57%.

Fig. 5. Ball detection during game; omidirectional camera; ball distance left: 5m

5 Context aware visualisation

Due to recent changes in the RoboCup rules it’s not possible to have any inter-
action with a control notebook. That means for example that error messages etc.
can’t be displayed in a secure shell (ssh) window because then the user some-
times has to scroll through the window to read certain messages. This will be
impossible as touching the mouse or the keyboard is not allowed at all. Due to
these restrictions a completely new context aware visualization architecture was
created. As an assumption the GUI should be as modular as possible so that
it is not only be used for error visualization but also for testing purposes. As
a consequence a modular plug-in compatible application was created for imple-
menting several different test and visualization applications in one GUI. One of
the advantages is that every user can create and save screen setups according to
his needs. Therefore it is possible to adopt the GUI to different situations where
for example during a game only an error monitor and a visualization of the field
is needed while during testing some other tools like a refbox command simulator
or a behavior monitor have to be used. The application has a standard interface
for data In-/Output accessible through sockets. This allows to exchange data lo-
cally as well as over the network without any changes in the code. Furthermore
it is essential that according to the current situation (e.g. testing, real match,
test match etc.) only selected information from the robot should be sent over the
network and visualized on an external notebook. A decision component on the
robot can dynamically decide which information is important and implements



the context aware approach. The basic principle of the architecture is shown in
figure 6.

Fig. 6. Data flow of context aware error visualization

6 Conclusion and Outlook

The RFC team has focused this year on several topics in its research efforts.
At first a new hardware platform was built that is able to satisfy the require-
ments of a modern, dynamic and easy to use robot usable for different scenarios.
Furthermore the reinforcement learning approach of basic robot behaviors has
been transferred to the higher strategy level and allows to dynamically adapt
to the strategies of an opponent using a distributed learning algorithm. In the
field of vision a stable system for recognizing arbitrary balls was implemented
and moreover a highly adaptable context aware error visualization component
was introduced.
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A. Tamke, and P. Levi. Physical simulation of the dynamical behavior of
three-wheeled omni-directional robots. In submitted to: RoboCup Symposium
2007, Atlanta, 2007.

[RWY95] Daniel Reisfeld, Haim Wolfson, and Yehezkel Yeshurun. Context-free at-
tentional operators: the generalized symmetry transform. Int. J. Comput.
Vision, 14(2):119–130, 1995.

[SB91] Michael J. Swain and Dana H. Ballard. Color indexing. Int. J. Comput.
Vision, 7(1):11–32, 1991.

[SSL+05] M. Schanz, J. Starke, R. Lafrenz, O. Zweigle, M. Oubbati, H. Rajaie,
F. Schreiber, T. Buchheim, U.-P. Käppeler, and P. Levi. Dynamic Task
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