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Abstract. This paper describes the status of the ISocRob MSL robotic soccer
team as required by the RoboCup 2011 qualification procedures. The most rele-
vant technical and scientifical developments carried out by the team, since its last
participation in the RoboCup MSL competitions, are here detailed. These include
cooperative localization, cooperative object tracking, planning under uncertainty,
obstacle detection and improvements to self-localization.

1 Introduction

The SocRob (Society of Robots) project, which focuses on cooperative robotics and
multi-agent systems, has been active since 1997 at the Institute for Systems and Robotics
at Instituto Superior Técnico (ISR/IST), Technical University of Lisbon. The ISocRob
team is the project’s case study on soccer robots, and has regularly participated in
RoboCup Middle-Size League since 1998, in the RoboCup Soccer Simulation League
in 2003 and 2004, and in the RoboCup Four-Legged League in 2007, in a joint effort
with the Italian team SPQR.

This paper describes the main novelties at the technical/ scientific level which have
been developed by the team since 2009, when it last participated in RoboCup MSL.
When appropriate, we cite the team publications on the described topics.

2 Scientific and Technical Challenges

Cooperative Localization Using Visually Shared Objects

We introduce a modification to Monte-Carlo Localization (MCL) that changes the par-
ticle injection step (used when a robot detects it is lost), using information provided by
other robot(s) of the team on the location of an object commonly observed by the lost
robot. This modification speeds up the recovery of the lost robot and is robust to percep-
tual aliases, namely when environments have symmetries, due to the extra information
provided by the teammates. The introduced method enables cooperative localization
in a multi-robot team, using visually shared objects, taking advantage of the specific
features of particle filter algorithms. Each robot is assumed to run MCL for its self-
localization, and to be able to detect when the uncertainty about its localization drops



below some threshold. An observation model that enables determining the level of con-
fidence on the ball position estimate is also assumed to be available at each robot of the
team.

Let us consider a team of N robots, r1, . . . , rn. Robot ri has pose (position + ori-
entation) coordinates lri = (xri , yri , θri) in a global world frame, and estimates them
using a MCL algorithm.

Each robot can determine the position of an object o in its local frame, therefore
being able to determine its distance and bearing to that object as well. Robots can also
determine if they are lost or kidnapped, i.e., if their confidence in the pose estimate
drops below some threshold. If a robot is not lost, it can also determine the object
position in the global world frame using the transformation between its local frame and
the global world frame that results from the knowledge of its pose. The estimate of the
object position in any frame is determined based on a probabilistic measurement model
that includes the uncertainty about the actual object position. When the global world
frame is used, additional uncertainty is caused by the uncertain pose of the observing
robot.

The position of the object as determined by robot ri in the global world frame is
denoted by pi

o = (xio, y
i
o), while the distance and bearing of the object with respect to

the robot, as measured by the robot, are given by dio and ψi
o, respectively. Details of

this algorithm is presented in our work [2]. A graphical explanation of the algorithm is
represented in Figure 1.

Cooperative Object Tracking

This work builds mainly upon [8] and [7], carried out in the direction of object tracking
and sensor fusion among teammates respectively. In [8], a PF based tracker is presented
with a unique and novel 3-D observation model based on color histogram matching.
Each robot has an individual tracker and its most notable feature is that the tracking
could be performed in 3-D space without the object color information, but at the cost
of computational expense. In [7] a sensor fusion technique for cooperative object local-
ization using particle filters is presented. Parameters of a GMM approximating a team-
mate’s tracker’s particles are communicated to the other robots. Particles at a robot’s
tracker are then sampled using own belief and the received GMM.

We introduce an approach to cooperative object tracking where we implement a
Particle Filter based tracker. This algorithm is represented in Figure 2. For each ob-
serving robot, we determine confidence factors associated to the tracked target from
two origins: i) the confidence on the observation itself and ii) the confidence on the
self-localization estimate of the observing robot. The observation model of each mo-
bile sensor is a parametrized probability density function (e.g., a Gaussian centered on
the observation). The probability density functions associated to the observations of
the team robots are shared by all of them in a pool. Each robot selects the best func-
tion, i.e., the one with higher confidence factors, from the pool, and uses it to assign
weights to the particles in the traditional PF update step. The parametrization of the
observation models intends to reduce significantly the amount of data communicated
to teammates, since the probability density function can be univocally represented by
its communicated parameters. The method handles, within a single unified framework,



Robot 2

Robot 1

Robot 3

I am lost but I 
can still see the
ball very well in my
local frame           

I am well localized and can
see the ball correctly in the 
global frame

I am well localized too and
 can also see the ball 
correctly in the 
global frame

Robot 1

Based on what my team-
mates tell me about the ball
and what I know about it, I 
must be in a circular region 
around the correct global 
position of the ball with
some uncertainty

Robot 1

Based on my perception of the field 
lines, I must be at this position on the 
previously expected circular region. 

Fig. 1. Algorithm for cooperative localization explained in a graphical manner.



Fig. 2. Algorithm for cooperative object tracking explained in a graphical manner.

inconsistencies (disagreements) between sensors due to observation errors and/or self-
localization uncertainty. In order to achieve near real-time tracking, we track the object
in 2-D space only and use the object color information. These will be relaxed in the
future work, as they depend mostly on the available computing power.

3D Object to 2D Image Bijection Principle

In our soccer robot platform the vision system is dioptric which involves one fish-eye
lens camera facing down towards the field. One of the target object to track is the ball.
In order to do so in 3-D using a single camera, we show that for each set of image points
of the ball’s periphery in an image as seen by a single camera, there exists a unique 3D
position of the ball.

d = fΘ, (1)

We propose 3D spherical object to 2D image bijection principle which states that
the periphery of a spherical object of known radius when observed through a fish-eye
lens which follows the equidistant projection model (1), always projects into a unique
curve in the image frame for each possible 3D position of that object. Conversely, each
curve in the image which satisfies the condition of being projected from the periphery
of a known spherical object back projects into a unique 3D position of that object. Fig. 3
shows the position of an object (So) and the image (Ci). We obtain the equation of Ci

as follows:

Ci ≡ r2o − ro
√
r2o −R2

o(sin(
d

f
) sinΘo cos(Φ−Φo)+ cos(

d

f
) cosΘo)−R2

o = 0, (2)



which is in the image’s polar coordinates d & Φ.

Fig. 3. 3D Object to 2D Image representation

It is evident from (2) that for every 3D position (ro, Θo, Φo) of the sphere of radius
Ro, there exists a unique curve Ci, conversely for every given image curve Ci there
exists a unique sphere position in 3D hence the spherical object to image transforma-
tion under equidistant projection model is bijective. This leads us to conclude that it is
possible to uniquely identify the position of a known dimension spherical object in 3D
using a single equidistant projected image.

Obstacle Detection

The ability to reliably detect obstacles is essential for any robotic soccer team, since it
provides a basis for safe motion control. In MSL, this is typically accomplished through
image processing. In ISocRob this algorithm has been based, since its inception, on a
simple color blob detection mechanism, which segmented out the darkest areas of an
image and classified them as obstacles if their pixel area was sufficiently large. This,
however, led to sporadic measurements and was too sensitive to light conditions, which
in turn caused the robots to have unreliable motion control at times. For these reasons,
the team developed a new, more robust, obstacle detection algorithm. This method is
able to track multiple obstacles in real time by creating and maintaining independent
Kalman Filters for each detected obstacle.

Its principle of operation is as follows: a histogram is first computed for the green
channel of each received image. In this channel, obstacles are more easily discernible,



exploiting the fact that, in the MSL environment, obstacles are black on a green back-
ground. Based on this histogram, a threshold is then calculated which best separates
obstacles from other components in the background. The segmented components are
then labeled into connected regions in the image.

Given that the dimensions of the expected obstacles are known a priori, since robots
from all teams have roughly the same size, this allows us to create a prior which can
be used to improve classification. Based on real data, this prior constitutes the expected
pixel area of an obstacle in the image, given its perceived distance. If a labeled area then
matches the expected area whithin certain bounds, it is then classified as an obstacle.

To account for sensor noise and possible erroneous classifications, each detected
obstacle is then associated with a Kalman Filter, which realistically models the dy-
namics of that obstacle’s motion in the image. Given the velocity of the robot running
this algorithm, an estimate of the obstacle’s velocity can then be naturally obtained as
a byproduct of the operation of these filters. Evidently, this implies the existence of
a data association step, each time an image is received. The way though which these
associations, between obstacles and active Kalman Filters, is accomplished, is similar
to common mechanisms for data association with unknown correspondences, typically
present in multiple-target tracking algorithms. If the Mahalanobis distance of the inno-
vation of any active filter, by using a detected obstacle as measurement, is whithin a
given range, then the most likely obstacle is associated with that filter. If no existing
filter verifies this condition, then a new filter is created to track that obstacle.

In its current state, and still finishing development, the filter can track multiple ob-
stacles with up to 87% correctness.

Task Performance Analysis

The ability to easily define task plans as Petri Nets has long been a hallmark of the
ISocRob team. However, due to the increased (mostly visual) complexity of these mod-
els when scaling up these tasks plans to multiple agents, these representations usually
carry a risk of performing unexpectedly is expert care is not taken. It can occur, for
example, that unreachable states are unknowingly included in the model, or that some
subset of it is susceptible to deadlocks (or livelocks). For these reasons, it is important to
formally analyze the models before they are guaranteed to be safe to use in practice. In
[3,6], extensive testing and analysis has been performed, both at a qualitative and quan-
titative level, of all the Petri Net models used by the team, using as theoretical basis
the work presented in [1]. Using as a main tool a realistic simulation environment (We-
bots, see Fig. 4), an analysis of the firing rate of the model’s transitions was performed,
from which it is possible to estimate the probability of success of a given plan, against
variable conditions such as adversarial capabilities. These most useful results not only
allow us to identify which behaviors are best suited against a particular opponent team,
but they also allow us to identify the primitive actions which most affect the probability
of a successful outcome for a given behavior. Based on this information, we then focus
on improving these actions to maximize the performance of the team.



Fig. 4. ISocRob’s Webots realistic simulation environment (up) and real testing facilities (down).

Formation Control for Cooperative Perception

The SocRob project has been recently acting as a case study for a joint project between
ISR and research teams at ISEP and FEUP, the PCMMC (Perception-Driven Coor-
dinated Multi-Robot Motion Control) project (funded by Fundação para a Ciência e
Tecnologia (FCT), reference: PTDC/EEA-CRO/100692/2008). The focus of this work
is on developing a framework for formation control of a team of robots with the goal of
enhancing the perception of a given object. Various challenging problems are dealt with
to this end, such as developing innovative formation state estimation methods, dynamic
control, decentralized data fusion and cooperative target tracking techniques.

POMDP-Based Task Planning

In recent research, the team has begun to explore the possibility of performing task
representation based on the Partially Observable Markov Decision Process (POMDP)
framework [5]. This framework’s powerful modeling capabilities can account for stochas-
ticity in a robot’s actions and observations, typically resulting in behaviors which can
value information gathering as well as reward acquisition (typically for achieving a
goal). By specifying a task as a POMDP, the behavior of the robot no longer has to be
specified as a manually-constructed conditional sequence of actions, since the solution
of the POMDP model naturally results in a policy which returns the best possible action
given the robot’s information, taking into account all possible contingencies present in



the model. Preliminary results show that simple tasks (such as a 2-robot attack plan)
can in fact be efficiently solved by casting the problem as a POMDP. This is one of the
team’s active and challenging research topics.

Monte Carlo Localization with Selective Resampling

Since 2008, the ISocRob team has been using a custom Monte Carlo Localization algo-
rithm to provide stable self-localization to the team’s robots [4]. Since then, the algo-
rithm has been greatly improved, progressively addressing its limitations based on its
performance during game situations.

Since various concurrently active algorithms, such as cooperative localization and
tracking, rely on having a reliable measure of the probability of a robot being correctly
localized, the team’s MCL algorithm is now able to estimate this measure based on a
priori information collected by the robots, based on the weight and variance of the fil-
ter’s particle set. Using this information, the stability of the algorithm can be improved
by selectively performing resample only when a robot’s localization certainty drops.
This reduces the chance of losing good localization due to sporadic measurements. Fur-
thermore, the algorithm is now able to dynamically select the best resampling scheme
to maximize this localization certainty measure.
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