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Abstract. The 1. RFC Stuttgart robot soccer team is used as a testbed
for multi-agent software architecture principles in dynamic real time do-
mains. The current research activities focus on a system for advanced
data logging using augmented reality and automated camera guidance.
It includes approaches from the field of real-time robot message logging,
situation based camera control and 3D video visualization. Another re-
search focus is a genetic algorithm for optimizing the motor control which
enables our robots to adapt to different floor and carpet conditions.

1 Introduction

In this work an approach for advanced data logging in the RoboCup domain is
presented which includes real-time robot message logging linked to video record-
ing and situation based camera control in combination with 3D rendering al-
gorithms. The RoboCup domain has become an important testbed for robotic
applications during the last years. The department Image Understanding of the
IPVS - University of Stuttgart is participating with its team 1.RFC Stuttgart in
the robotic soccer middle-size league. In this league a team of five autonomous
robots is playing together. The robots share and merge information in order to
show real team play and cooperative actions. As the robots are communicating
data over a wireless network there is the possibility to log, visualize and analyze
that data during matches for analyzing for debug purposes. Due to the rapidly
growing complexity of the robots software system, which acts in the real world,
it becomes more difficult to debug the system in real-time. As a consequence
powerful tools for collecting and analyzing data are very important. Those tools
have to work in real-time during a match as well as in the post game analysis.

The second part of this team description paper describes an automated con-
figuration for motor controllers. To optimize the low-level drive-behavior of the
robot to get best driving performance we are developing a genetic algorithm
approach for optimization of the motor controller parameters of a robot. The
goal is an automatic learning approach to obtain the best parameters for the
controller without any manual override.



2 Related Work

As the autonomous camera man includes techniques from a lot of different fields,
we want to give a short overview over some articles which mainly influenced the
development. The information that is exchanged between the robots to generate
a common world model [BKL03] is merged to reduce noise in the measurements
as described in [BKZ+08]. The team behavior of the cooperative robot system is
a result of negotiations, based on a multi agent system (MAS) [Mus00] and can
be compared to [Tam97]. The behaviour can be configured by XABSL [LBBJ03]
and uses methods like selection equations and interaction nets that are described
in [LSZ+07] and [ZLB+06]. The autonomous camera man enables an analysis of
the team behavior by visualizing the information that is exchanged between the
robots and which leads to the decisions in the teams strategy. The basic ap-
proach for the camera location determination problem is based on the work of
Bolles and Fischler [FB81].

To optimize the low-level drive-behavior of the robot we are developing a
genetic algorithm approach for optimization. As shown in several approaches
[Gaw86], [MP00], [MP00], [BCP01] self-tuning PID controllers have been de-
veloped for several systems using several different methods. Gawthrop [Gaw86]
showed an approach of a hybrid PID self-tuner by combination of a continuous
time process model and a discrete-time self-tuning controller. Huang and Lam
[HL97] introduced a method based on genetic algorithms for automatic tuning
of proportional, integral and derivative (PID) controllers in Heating Ventilating
and Air Conditioning (HVAC) systems to achieve optimal performance. Genetic
algorithms, which can considered as search methods based on the theory of Dar-
win’s natural selection, are used in finding near-optimal solutions in complex
problem spaces since they have been proved to be robust and efficient.

3 Debugging in a Multi-Agent Robot System

In order to improve the general logging capabilities of robot systems and to
visualize the corresponding data in a way that is easy to understand for hu-
mans we implemented an autonomous camera man and a visualization using
augmented reality. The system consists of a camera, a pan-tilt unit (PTU) and
a software for controlling both, which is connected to the team’s communication
channel which our robots are using during a match, to automatically steer the
PTU where the camera is mounted on. As a consequence a whole match can
be filmed autonomously without human interference. Furthermore the system
is rendering all the information gained from the robots into the live image of
the camera. This allows for interpreting all scenes in a much better way. More-
over it is possible to save the whole video stream and data stream from the
robots. Consequently the data and video stream can be replayed and even the
kind and amount of information rendered into the video stream can be changed
and adapted. Such a system is based on different approaches from autonomous
systems, 3D visualization and vision.



3.1 Automated camera guidance

The PTU is controlled via a serial device, which makes it impossible to steer the
device in real-time. The only information available consists of the commands that
have been sent to the device. In order to merge the coordinate systems of the
video and augmented scene, we have to know precisely the current orientation
of the camera. To solve that problem an observer tracks the angles of the PTU.

The coordinates of the object of interest are first chosen due to the current
state of the shared world model. Those are transformed to the camera frame
and the corresponding pan- and tilt angles are calculated. They are sent to both
the device and the observer. The visualization process always uses the values of
the observer. Correction of the estimated position of the observer is done via
“bang-bang control”, because the only fact known when reading the values from
the device is, whether the observer has already been in position or not. The step
of adjustment can be chosen by the time difference between PTU and observer in
reaching the wanted position. Experience showed that the acceleration phase of
the stepper engines is negligible small. So the observer equation can be obtained
as

θn+1 = θn + (θn − θC)(tn+1 − tn)vCδveδve = tobs
f − t

pt
f (1)

where θn is the pan-, resp. tilt-, angle internally calculated in the observer,
variables with subscript. C are the values of the latest command that has been
sent to the real PTU.

3.2 Augmented reality

The grabbed image from the camera is directly mapped on a GL texture, This
enables an overlay with information from the robots world models and any 3D
mapping of the image in our Augmented Reality Scene. Therefore the field of
vision is not limited to the view of the camera, as shown in Figure 1. It can be
extended to include more information that is exchanged between the robots but
not included in the field of vision of the camera.

All information for the augmented scene is gathered via the communication
of the robots using a message dispatch server. The robot control graphical user
interface (RCG) holds a copy of all transferred data. Usually the ball is used as
an indicator for the most important view frustrum. But in some cases another
object might be of interest, e.g. when the ball is shot with high velocity so that it
is impossible for the robots to track it. If our team tries to score, the opponent’s
goal is chosen as center for the camera direction. Our goalkeeper is centered
when the opponent is attacking our goal.

3.3 Camera Pose Framework

In order to overlay the abstract information with the video stream a basic neces-
sity is to find the camera position with respect to the RoboCup game field. The
cameras coordinates frame is not known in the soccer field’s frame. We know the



Fig. 1. Screenshot of the videobox in the scene, when the view matrix is fixed to the
estimated camera position.

3D-coordinates of the corners of the field, which are our control points. As the
camera is attached to a PTU and since only one or two corners of the field are
found together in one image, the idea is to focus the control points step by step,
and to measure the corresponding PTU angles.Afterwards the camera location
can be determined as described by Bolles and Fischler [FB81].

An extension of this method is necessary because the orientation of the PTU
mounted on a tripod can differ additionally from the fields coordinate system.
The new approach consists of comparing the angles used by the PTU to focus
the control points, and the theoretical angles it should have used if there was
no angle offset. There are three types of angle offsets for the camera : pan, tilt

and pitch. The angles measured are pan und tilt, and we consider these angles as
2-dimensional points with pan as x-coordinate and tilt as y-coordinate, so that
the pan offset and tilt offset are equivalent to a translation (Pan and Tilt are the
only two angles which are driven by the PTU). The pitch offset is equivalent to
a rotation with the origin of the frame as center of rotation (the Pan Tilt unit
is mounted in a way that the 0-position is also the axis of rotation for pitch).
The pitch offset is computed with a Principal Component Analysis (PCA): it’s
the angle between the two principal components. Then the pitch offset has to be
compensated for computing the other offsets, rotating the measured values by
the previously computed pitch offset. The pan offset and the tilt offset can be
derived simply by translating between the theoretical and compensated values.



3.4 Analysis and Export

During a RoboCup match our automatic cameraman can record a video and
the communication between the robots. Afterwards it is possible to replay the
video and to include the overlays generated from the messages of all robots. The
possibility of modifying the speed of the replay or to display each image of the
sequence step by step enables a detailed analysis of the robot’s interpretation of
sensor data. Changes in a robot’s role or strategy can be compared to Positions
of obstacles in the robot’s world model and to the real world at the same time.
An export of a video including the camera images and all overlays enables an
exchange of the logs between the teams and a simple playback of a RoboCup
game on any pc.

4 Self-learning motorcontrol

The motor controller [Max10] of the robot has a set of many parameters that can
be changed in order to achieve the best driving-performance according to the
environment [Lip06]. To evaluate such a set of parameters, it is necessary to run
a short test drive that takes several seconds. With billions of possible parameter
combinations, a simple try-and-error method will take far too long to reach a so-
lution. Thus we are forced to use methods from the machine learning theory. Be-
side methods of reinforcement learning another promising approach to solve this
problem is the use of genetic algorithms [Gol89],[JJdSC+03], [ES03],[MYK99],
[Gaw86]. Genetic algorithms, which can be considered as search methods based
on the theory of Darwin’s natural selection, are used since they have been proved
to be robust and efficient in finding near-optimal solutions in complex problem
spaces. The interdependence of some parameters of the motor controller and the
effect to the driving behavior is shown in figure 2.

4.1 Genetic algorithms

The core part of the genetic algorithm (GA) is its fitness function where the
test drive is performed. This makes it the most time consuming part of the
optimization process - therefore one of the main challenges is to minimize the
number of calls of the fitness function. For example it can be an advantage to
let the parents survive if they have a higher fitness than their children. On the
other hand, this can be a problem if the population is very small and the genetic
variance becomes too low [ES03]. To prevent this, it seems reasonable to use all
individuals for the recombination and to make the selection only by comparing
the fitness of the parents with their children. At that point, we have to decide
whether comparing only the children with their own parents or sort the fitness of
all individuals and take the best, independent from which generation they are.
Another interesting approach is to switch after a few generations to evolution
strategies. This is useful if we are close to the global maximum and want to
exploit it.



Fig. 2. The diagram shows the difference between the angular velocity set to the motors
and the real values (measured by encoders [Max08]). a) poor PID-Parameters (delta
between set and real values is high) b) optimal PID-Parameters (delta between set and
real values is low)



4.2 Fitness function

The most difficult part is to find a good fitness function with some criteria to
determine how well a solution performs. Therefore we give a certain desired
speed directly to the low-level controller and measure the effective speed of the
wheels. The goal is to minimize the difference between these two values. For
evaluation purposes we create a test-run with different speeds, unit steps, ramps
and so on. To calculate the summarized error of one complete test-run we are
evaluating different methods (e.g. quadratic mean). The only limiting factor is
the time we need for such a run. Another problem is the uncertainty and the
slippage due to the wheels during the acceleration in the test-runs that results
in a change of the direction of the robot. This requires a permanent check of the
current position which can be also one criteria for the fitness-function. The state
of the battery charge is also a variable we have to check for each run, because
a low voltage could be results in negative behavior changes. The mathematical
description of one of our fitness-functions is shown in the following:

α(t + 1) = α(t) + (abs(vset − vreal)
λ (2)

fitness(t) =
γ

(α(t) − αmin)
(3)

Where γ, αmin and λ equates to a learning-rate parameter. vset corresponds
to the angular-velocity set by the controller to the motor and vreal corresponds
to the real values (measured by odometry).

5 Conclusion and Outlook

In this paper we presented an approach for a self-learning configuration of motor
controller and an autonomous camera man as a powerful data logging tool. Prac-
tical experimence showed that the approach for logging game data in a RoboCup
match makes it much easier for the developers to debug robot software using a
3D visualization which is easy to interpret.As a further step the system should
use the panorama camera LadyBug II, which is able to create 360degree images.
Transferring the camera location determination problem to such a system will
be a new challenge.
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