
Carpe Noctem Cassel Team Description 2016

Dennis Bachmann, Eduard Belsch, Thore Braun, Nugroho Fredivianus, Kurt
Geihs, Michael Gottesleben, Stefan Jakob, Thomas Kleppe, Nils Kubitza, Kai

Liebscher, Lisa Martmann, Thao Van Nguyen, Stefan Niemczyk, Stephan
Opfer, Tobias Schellien, Phileas Vöcking, Lukas Will, Andreas Witsch

Distributed Systems Research Group, University of Kassel, D-34121 Kassel, Germany

Abstract. In this paper we describe the most important improvements
of our middle-size league robots in the last year. Concerning the soft-
ware components, we ported our framework to C++ and implemented a
new localization algorithm, which provides global localization with a low
computational overhead. Furthermore, we developed our new hardware
devices, which improve the maintainability and robustness of our robots.
In particular, we made a new concept for the kicking and ball-handling
mechanism, the omni-vision, and the low-level actuation control device.

Keywords: Carpe Noctem Cassel, RoboCup MSL, Team Description
Paper, Mechanical Concepts, Localization, Path Planning

1 Introduction

The RoboCup Team Carpe Noctem Cassel (CNC) has been founded in 2005 as
part of the Distributed Systems Group of the University of Kassel. Since that
time, we participated in eleven national and international tournaments. The pur-
pose of the team is manifold. One purpose is to give undergraduate students an
early opportunity to research related and practical topics from the area of AI
and robotics. Carpe Noctem Cassel is a student-based team, with currently
one PostDoc, three PhD candidates, and 12 undergraduate students. Another
purpose of the team is to offer a sophisticated testbed for the Distributed Sys-
tems Research Group in general. Our research mainly focuses on mechanisms
to model and establish cooperative behaviour. In this context, we developed the
multi-agent coordination language ALICA (A Language for Cooperative Inter-
active Agents) [5,7]. ALICA models multi-agent behaviour from a global per-
spective, which provides an intuitive understanding to the developer. Its fully
distributed implementation strongly supports dynamic team composition and
unreliable communication, as it is tolerant towards packet loss and delay. There-
fore, ALICA agents track the actions of the others using their local observations
and updates these based on the information received over the network. As de-
scribed in Section2, in the last two years, we ported ALICA from C# to C++
to address a broader user community and improve the efficiency.

To facilitate the implementation of ALICA behaviours, we provide a path
planner, which relies on a Voronoi Diagram [3]. Each cell of the diagram rep-
resents a possible obstacle on the field. Since the Voronoi edges describe the



most distant line between a pair of obstacles, we can apply an A∗ search on the
Voronoi edges to avoid other robots. In the context of the new C++ version of
ALICA, we also investigated a new implementation of this path planner, which
is now based on the CGAL library [8], see Section 3 for details. In Section 4,
we describe a new localization algorithm, which combines two well-known ap-
proaches, to smoothly switch between a low runtime and the ability to provide
a global localization.

The development of an efficient cooperative behaviour in robotic soccer re-
quires a robust and maintainable platform. Hence, we develop new sensor and
actuation devices. In particular, we reworked the camera system, which enables
an unobstructed view (see Section 6). We also designed a new kicking device,
which allows to adjust our kicking angle within a continuous range, as presented
in Section 5. Finally, we developed a new control board for the low-level actua-
tion devices. Here, we could reduce the efforts for maintenance and monitoring,
by integrating a ready-to-use ARM processor board, which runs a Linux system,
as described in Section 7.

2 Porting Software to C++

At the International MSL RoboCup Workshop in 2013, a survey about our high-
level multi-agent coordination framework ALICA revealed, that most of the par-
ticipants would only consider to use our software, if it would be coded in C++.
At that time, most of our software, including ALICA, were written in C#. Due
to the survey, the prevalence of C++ in the robotic community, and poor tool
support for C# under Linux, we ported our C# software components to C++.

Furthermore, our complete framework is now publicly available on GitHub
under the open-source MIT License. This even includes all our strategies, sen-
sor data processing algorithms, controllers, and supplementary tools for the
RoboCup MSL domain. Although our software utilises ROS [4] as inter-process
communication middleware, we took care that ALICA is designed as independent
as possible. The only requirements/dependencies of ALICA are a Linux based
operating system, the C++11 Standard Library, and our own configuration file
library. ALICA provides easily implementable interfaces for arbitrary communi-
cation middlewares and custom clocks. The clock interface, for example, allows
for replaying log files with adjustable speed and for synchronous running with
slower simulators.

Another ported software component, we want to mention here, is our con-
straint satisfaction solver [6,9]. It allows to solve arbitrary positioning problems,
e.g., one-on-one defence or double pass positioning with little programming ef-
fort.

3 Path-Planning with CGAL

Our current path planner utilises a road-map approach that creates a Voronoi
Diagram of the robots environment (see Figure 1(a)). Porting our software from



C# to C++ enabled an easy integration of the Computational Geometric Algo-
rithms Library (CGAL) into our ported path planner. CGAL offered us several
improvements over our own C# implementation. The run-time performance was
improved in general, as CGAL allows to build a Voronoi Diagram incrementally,
and to remove obstacles from the Voronoi Diagram. Therefore, we are able to
influence our path planning by changing the Voronoi Diagrams depending on the
situation. The MSL RoboCup rules, for example, forbid to have two defenders
in the penalty area. If one of our defenders is inside the penalty area, we change
the Voronoi Diagrams of all other field players in a way that avoids target points
inside, as well as, paths through the penalty area (see Figure 1(a)).

(a) In-Game Voronoi Diagram (b) Blocked Penalty Area

Fig. 1. Voronoi-Based Path Planning

The Voronoi Diagram itself has several properties, which are interesting for
the RoboCup MSL domain. If the Voronoi cells are formed by one robot each,
then, assuming all robots have the same velocities and accelerations, a Voronoi
cell is the area the corresponding robot can reach before all other robots. There-
fore, the Voronoi Diagram is an ideal geometric data structure for determining
pass points and optimizing the positioning for zone defence strategies.

4 Carpe Noctem Dynamic Localization

The ability to determine the position of robots is one of the key requirements in
order to enable a strategic and comprehensive game play. Over the last years, we
evaluated two different localization strategies during our participation in mul-
tiple RoboCup tournaments. In the first years, a particle filter was used. Here,
1200 position hypotheses (particles) are sampled and evaluated based on de-
tected lines. These were optimized by an approach similar to a genetic algorithm.
Therefore, the best matching particles are used to sampled a new generation.
After few generations, the best matching particle was used as robot position. The
particle filter allowed us to localize a robot without requiring a known starting



position. However, the high amount of computation time (approximately 10 ms
on a Intel Core2Duo with 1600 Mhz) was a major drawback.

The RoboCup Team Tribots developed an localization approach based on
error-minimization [2]. This approach tracks the robot position and refines it
based on detected lines. Therefore, the error function, which computes the qual-
ity of the matching between detected lines and tracked position is derivated for
the three position parameter (x, y, and α). Following this gradient to a local op-
timum leads to an minimization of the matching error. However, the approach
requires an initial position hypothesis. Hence, we lost the ability to localize a
robot at an arbitrary field position. In conclusion, a delocalized robot needs to
be taken out of the game.

Our new localization approach called CANDL (CArpe Noctem Dynamic Lo-
calization) combines both approaches to enable a fast localization and a re-
localization of our robots. Therefore, we sample a dynamic number of n particles,
similar to a particle filter. Afterwards, the best matching particles are selected
and are refined by m optimization steps. CANDL switches smoothly between
the particle filter and the error-minimization approach by adjusting n and m.
By choosing high values for n (e.g. 1200) and small values for m (e.g. 0) the
localization behaves like a particle filter. Vice versa, small values for n (e.g. 1)
and high values for m (e.g. 20) results in a error-minimization like behaviour.
As a result, we can localize our robots at any position on the field. Furthermore,
after an initial localization a dynamic switch to the error-minimization enables a
fast and precise position determination. A final algorithm for a dynamic adapta-
tion of both parameters is currently work in progress. We plan to make CANDL
publicly available on GitHub under the open-source MIT License.

5 New Concept for Kicker and Ball-Handling

During the last year, we developed a new mechanical concept for our kicker and
ball handling devices (see Figure 2). The CAD files and mechanical drawings are
part of the qualification material. We achieved several improvements, compared
to the earlier versions. The height over ground of the kicking lever can be changed
continuously. This allows for kicking trajectories that are more flexible than by
adjusting the kick power. The current position of the kicking lever is monitored
by an integrated sensor. The motor which is driving the kicking lever has a break
mounted that fixates the lever during a kick. The overall configuration is shown
in Figure 3(a).

The active ball handling concept consists of two arms that are very adaptable
to different balls and driving manoeuvres of the robot. Each arm includes a
damper for receiving/stopping fast passes and is hold in position with several
springs. The spring configuration allows to choose different amounts of contact
pressure between the ball and the wheel. The actual position of each arm is
monitored by a linear sensor, as shown in Figure 3(b).



Fig. 2. Overview of the new Kicker and Ball-Handling Concept

(a) Kicker Concept (b) Ball Handling Concept

Fig. 3. Details of the Kicker and Ball-Handling Concept



6 Omni-Vision Concept

Calibrating the vision system is a time taking job for most of the middle size
league teams. Each environment provides different lightning conditions and the
alignment of mirror and camera should be as precise as possible for crucial
matches. Therefore, we developed a new concept for our omni-vision system, as
pictured in Figure 4(a). The system combines several improvements compared
to our old system. At first, the acrylic glass cylinder allows for a free sight in all
directions. Furthermore, the distance between camera and mirror can easily be
adjusted without tools, as seen in Figure 4(b). Finally, the plane as well as the
axes of the mirror can be adjusted to the cameras position. The corresponding
setscrews are shown in Figure 4(c).

(a) New System (b) Camera Ad-
justment

(c) Mirror Adjustment

Fig. 4. The new Omni-Visio Concept

In order to avoid reflections on the acrylic glass cylinder, it is covered with an
anti-glare foil. The weight of the complete system, including our camera, is 960g.
The technical drawings are part of the qualification material on our website.

7 Redesign of Actuator Board

The Actuator Board is a self-made printed circuit board (PCB) integrated in each
of our robots (see Figure5(a)). It has several tasks to manage. One of the most
important ones, is to control the active dribbling device according to the robots
movements and the feedback from the optical flow sensor (see Figure 5(b)).
The optical flow sensor detects the ball’s angular velocity in two dimensions.
The robot movements are measured by the inertia measurement units (IMU,
LSM9DS0) on the actuator board. The motors of the active dribbling device
are controlled by to small motor controllers, which are also a piggyback circuit



board of the actuator board. Another job, is to send messages to our PC, when
one of several buttons at the robot is pressed. The current button functionalities
are reinitialising the localisation and restarting processes.

(a) Actuator Board Prototype (b) Optical Flow Sensor

Fig. 5. Actuator Board and Optical Flow Sensor

The new design of the Actuator Board utilises the Beagle Bone Black [1]
micro computer board. It is similar to a Raspberry Pi, but its design is much
more geared towards a robotic application scenario. Its specifications are 1 Ghz
ARM Cortex-A8 processor, 512 MB RAM, 4 GB flash storage, and several buses
and interfaces like Ethernet, SPI, I2C, UART, CAN, 65 GPIOs, eight PWMs,
and seven analogous I/Os. This allows us to communicate between the PC and
low level sensors with TCP/IP on the PC side. That way the complexity of the
self-made parts of the actuator board is reduced to a simple breakout board for
the Beagle Bone Black.

8 Conclusions

The Carpe Noctem Cassel Mid-Size RoboCup team of the Distributed Sys-
tems Research Group at the University of Kassel has a research focus on lean soft-
ware architectures, mechanisms to model and establish cooperative behaviour,
and cooperative artificial intelligence. We use the RoboCup scenario as a testbed
for our research as well as for education and teaching efforts. Our robots and
the control software were designed from ground up with modularity and extensi-
bility in mind. We look forward to evaluate our ported software framework and
innovative localization during the next tournaments.



References

1. BeagleBoard Foundation: Beagle Bone Black. Revision C edn. (2015), http://www.
beagleboard.org/BLACK

2. Lauer, M., Lange, S., Riedmiller, M.: Calculating the perfect match: An efficient and
accurate approach for robot self-localization. In: Bredenfeld, A., Jacoff, A., Noda,
I., Takahashi, Y. (eds.) RoboCup 2005: Robot Soccer World Cup IX, Lecture Notes
in Computer Science, vol. 4020, pp. 142–153. Springer Berlin Heidelberg (2006),
http://dx.doi.org/10.1007/11780519_13

3. Opfer, S., Skubch, H., Geihs, K.: Cooperative Path Planning for
Multi-Robot Systems in Dynamic Domains, chap. 11, p. 237–258. In-
Tech (nov 2011), http://www.intechopen.com/articles/show/title/

cooperative-path-planning-for-multi-robot-systems-in-dynamic-domains

4. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

5. Skubch, H.: Modelling and Controlling of Behaviour for Autonomous Mobile Robots.
Westdeutscher Verlag GmbH (2013)

6. Skubch, H.: Solving non-linear arithmetic constraints in soft realtime environments.
In: 27th Symposium On Applied Computing. ACM SAC, vol. 1, p. 67–75. ACM,
ACM, Riva del Garda, Italy (2012)

7. Skubch, H., Saur, D., Geihs, K.: Resolving conflicts in highly reactive teams. In:
Kommunikation in Verteilten Systemen 2011. Open Access Series in Informatics,
Open Access Series in Informatics (2011)

8. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board,
4.7 edn. (2015), http://doc.cgal.org/4.7/Manual/packages.html

9. Witsch, A., Skubch, H., Niemczyk, S., Geihs, K.: Using incomplete satisfiability
modulo theories to determine robotic tasks. In: Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on. IEEE, IEEE, Tokyo (11 2013)


