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Abstract. This paper describes the software and hardware system developed by
the University of Freiburg team of search and rescue robots for the RoboCup Res-
cue 2010 competition. This system is an extension to the software that finished
in first place the 2005 and 2006 autonomy challenge, focusingon two key areas:
autonomous navigation and manipulation. Our team, consisting mainly of stu-
dents, originates from the former CS Freiburg team (RoboCupSoccer), the ResQ
Freiburg team (RoboCupRescue Simulation), and RescueRobots Freiburg teams
’05 and ’06.

1 Introduction

Our main contributions to the league are robust techniques for autonomous navigation
and manipulation. We are implementing victim search with a manipulator carried by the
mobile robot platform. This particularly allows to examinevictim locations on different
levels of height. Our goal is it to make this process autonomous and to execute it while
the mobile robot platform explores the environment. The deployed mapping technique
has been tested by First Responders during several events, and is currently integrated
into a commercial robot.

For operator assisted exploration a flexible human robot interface (HRI) is devel-
oped, that displays all mission-relevant data to the operator. The GUI contains different
views and allows for optimal control during autonomous and manual driving of the
robot. To determine the possible location of victims, a computer vision system searches
for holes in the surrounding walls. If they emit heat, the probability for a victim is in-
creased and mission control then further analyzes the location. We use a 2D grid map
to integrate data from the laser range finder (LRF) and possible victims as reported by
the victim detection component.

To track the exploration progress of the robot, we update thesensor coverage in
every cell for each sensor separately. The planned trajectories of the robot are then
executed by a reactive driving behavior that follows way points along the trajectory path
while avoiding obstacles. Themission controlconnects all on-line systems of the robot



together by monitoring their states and sending them commands. It is implemented as
a set of timed automata.

RescueRobots Freiburg is a team of students from the University of Freiburg. The
team’s approach proposed in this paper is based on experiences gathered at RoboCup
during the last ten years. The team originates from the former CS Freiburg team[Weigel
et al., 2002], which won the RoboCup world championship in the RoboCupSoccer
F2000 league three times, and the ResQ Freiburg team[Kleiner et al., 2005a], which
won the RoboCup world championship in the RoboCupRescue Simulation league in
2004, and Rescue Robots 2005[Kleineret al., 2005b], and 2006[Kleineret al., 2006].

2 Team Members and Their Contributions

– Team Leader/Manipulation: Christian Dornhege
– SLAM: Andreas Hertle, Alexander Kleiner
– Controller Design and Behaviors: Martin Gloderer
– Victim Identification: Diego Cerdan Puyol, Thomas Liebetraut
– HRI: Roxana Bersan, Philipp Blohm
– Mission Control: Johannes Bendler
– Advisor: Alexander Kleiner, Bernhard Nebel

3 Operator Station Set-up and Break-Down (10 minutes)

Our robot is controlled by a lightweight laptop via aLogitech Rumblepad, which all
can be transported together in a backpack. TheMatilda robot can be transported by a
moveable case with wheels and is easily two-man-portable. The whole setup and break-
down procedure can be accomplished within less than10 minutes, including booting the
computers, checking the network connection, and checking whether all sensors work
properly.

4 Communications

Autonomous as well as teleoperated vehicles are communicating via wireless LAN. We
use an access point from Linksys, which is capable of operating in the5 GHzas well as
in the2.4 GHzband. All communication is based on the Inter Process Communication
(IPC) framework, which has been developed by Reid Simmons[Simmons, 1997]. The
simultaneous transmission of multiple digital video streams is carried out by an error-
tolerant protocol which we developed based on the IPC framework.

5 Control Method and Human-Robot Interface

We implemented a Human Robot Interface (HRI) for interacting with the robot. There
are two situations to be considered. First we place emphasison the autonomous control
of the robot. Thus our main focus lies on the yellow arena and possibly the orange arena
in autonomous operation.



Fig. 1. This figure shows the Human Robot Interface when detecting a victim.

Apart from that teleoperation with a joypad linked to a portable laptop is possible.
This mode of operation is primarily intended for the more complex arenas. In order
to give the operator a comprehensive overview of the robot’sstate, different data is
displayed. Besides images of the CCD and thermo camera, an elaborate map is shown.
In addition to the 2D grid map of the surroundings, which is build based on laser scans,
the robot position, victim locations, and additional information about the environment
are displayed.

In order to highlight the relevant information in differentsituations our GUI can
switch between certain views. For operator navigation a camera image is displayed
large and centered, while additional information is shown smaller on the side. Addi-
tionally, there is a view centering the map and giving the operator the chance to define
destinations the robot should travel towards, autonomously. Finally for the examination
of victims there exists a view displaying the relevant information delivered by the vi-
sion systems. Here the operator can further examine the information gathered about the
victim if unable to decide on whether the observation actually shows a victim on first
sight.

Furthermore, the GUI has the functionality for the operatorto switch between the
four different robot modes, which are pause, autonomous operation, manual control and
driving autonomously based on the waypoints set by the operator. Finally the states of
the different modules of the robot as well as additional information about the robot state
are displayed for supervision.

6 Map generation/printing

6.1 Simultaneous Localization And Mapping (SLAM)

We are generating 2D maps from laser-based scan matching. During the last decades a
rich set of solutions for building maps from 2D laser range data has been proposed, such



as[Lu and Milios, 1997; Gutmann, 2000; Hähnel, 2005]. In contrast to scan matching
methods, more sophisticated methods, such asFastSlam[Montemerloet al., 2002], and
GMapping[Grisettiet al., 2005], were introduced that are correcting the entire map at
once when loop-closures, i.e., re-visits of places, are detected.

(a) (b)

Fig. 2. These screenshots show the 2d grid map generated autonomously by the robot. (a) Occu-
pancy map. Obstacles are colored black, traversable cells are colored white. Frontiers are colored
blue. (b) Same map showning the discomfort values of cells inred. The darker the color, the
bigger the discomfort cost for traversing that cell.

Although existing methods are capable of dealing with sensor noise, they do require
reasonable pose estimates, e.g., from wheel odometry, as aninitial guess for the map-
ping system. As commonly known wheel odometry tends to become unreliable given an
unpredictable amount of wheel slip, which is frequently thecase on rough terrain, such
as found during USAR missions. Furthermore, methods performing loop-closures are
mostly not applicable in real-time since their computational needs can unpredictably
increase within unknown environments.

The mapping approach utilized for our robot team focuses on the application sce-
nario of realistic teleoperation. Under certain constraints, such as low visibility and
rough terrain, first responder teleoperation leads to very noisy and unusual data. For ex-
ample, due to environmental make-up and failures in control, laser scans are frequently



taken under a varying roll and pitch angle, making it difficult to reliably find correspon-
dences from successive measurements. In contrast to artificially generated data logs,
logs from teleoperation seldom contain loops.

Most existing methods are following the principle of minimizing the squared sum of
error distances between successive scans by searching overscan transformations, i.e.,
rotations and translations. Scan point correspondences are decided only once before the
search starts based on the Euclidean distance. In contrast to other methods, our scan
matching approach re-considers data associations during the search, which remarkably
increases the robustness of scan matching on rough terrain.The algorithm processes
data from laser range finder and gyroscope only, making it independent from odometry
failures, which likely occur in such domains, e.g., due to slipping tracks.

The mapping approach has been extensively tested on robot platforms designed for
teleoperation in critical situations, such as bomb disposal. Furthermore, the system was
evaluated in a test maze by first responders during the Disaster City event in Texas 2008.
Experiments conducted within different environments showthat the system yields com-
parably accurate maps in real-time when compared to more highly sophisticated offline
methods, such as Rao-Blackwellized SLAM. More details on the utilized mapping ap-
proach are found in[Kleiner and Dornhege, 2009].

The generated map integrates all sensor measurements: The laser data is used to
find walls and obstacles like ramp, stairs and step fields. Thevisual camera and the
thermal camera provide possible victim locations. In the grid map we also track the
sensor coverage of the environment. Our thermal camera has anarrow field of view
and a low range (compared to the laser range finder). With thisinformation the robot
can determine which parts of the environment were not yet explored with all available
sensors. The same grid map data is transfered from the robot to the operator, so that the
operator can monitor the progress of the mission. Figure 2 a)shows a map generated by
the robot.

6.2 Exploration and Path Planning

The robot uses the map to plan a path to the next mission objective. Mission objectives
can be frontiers or points of interests (e.g. heat sources).Our planning algorithm does
not necessarily determine the shortest path to a mission objective, but rather the safest
path, where the collision with obstacles and traversal overrough terrain can be avoided.

We employ a technique called Exploration Transform as proposed by Wirth and
Pellenz[Wirth and Pellenz, 2007]. Based on the obstacle data acquired from the laser
range finder we compute a distance map. With this informationwe assign the cells in
the grid map additional discomfort cost. When we compute thelength of a path, the
discomfort cost is added to the traversal cost of the cell. Sopaths that bring the robot
close to obstacles have a higher cost than paths with a safetydistance to those obstacles.
Figure 2 b) visualizes the discomfort cost.

With the Exploration Transform we can also select the best ofmultiple mission
objectives. We initialize the grid cells of the objectives with a cost of zero. Then we
use an efficient flood fill algorithm to build a gradient from the mission objectives to
the robot’s position in the map. To retrieve the safest path we follow the gradient until



(a) (b)

Fig. 3. These screenshots of the 2d grid map show examples of the gradient computed during
planning. (a) Planning to a nearby frontier. (b) Planning toan arbitrary chosen location.

we reach a mission objective. Figure 3 shows two planning gradients and the extracted
paths.

7 Sensors for Navigation and Localization

7.1 Sensor Setup

Figure 4 shows the current sensor setup on our Matilda robot.Our main sensor is a
Hokuyo UTM-30 laser range scanner that has a maximum range of30 meters and de-
livers data at 40 Hz. The sensor can be mounted on a tilt unit enabling auto-levelling
and 3D data acquisition. Additionally a vertically mountedHokuyo URG-04LX sup-
ports the horizontal scanner. It is used to support SLAM on non-flat flooring and to
detect prominent three dimensional structures as stairs during navigation. An XSens
Mti inertial measurement unit completes the sensor setup for navigation.



Fig. 4.This figure shows the current sensor setup on our Matilda robot. The Hokuyo UTM-30 on
a tilt unit (1), a vision camera (2) and a thermal camera (3) can be seen.

8 Sensors for Victim Identification

8.1 Manipulation

The sensor setup displayed in Figure 4 differs from the final setup that can be seen in
Figure 5. Additionally, a Schunk 5-dof manipulator with more than one meter reach that
is currently in production will be mounted in the center of the robot. The thermal cam-
era, a vision camera, and a Hokuyo-URG-04LX laser range scanner will be mounted at
the tool center point of the manipulator. During autonomousoperation the manipulator
is used to position these sensors directly in front of possible victim locations and thus
enables us to find victims at any height.

8.2 Hole detection from Vision

Victim detection from vision uses a manipulator-mounted computer vision camera. The
main target of the victim detection by vision is to identify the circular holes in walls, as
those are spots where victims are possible. The real identification of the victim is then
done by further analyzing a specific hole with the thermal camera.

The first step of finding such holes is shown in Figure 6. The camera image is
converted to a gradient image using the Sobel edge detectionoperator. The brighter the



Fig. 5.This figure shows the final setup of the Matilda robot when the Schunk 5-dof manipulator
is mounted.

edge, the more significant the edge. It can be clearly seen that the contours in the wall
are detected as good edges, while the wood grain adds just little noise. As the holes
as viewed from this angle are ellipses rather than circles, an efficient ellipse detection
algorithm[Xie and Ji, 2002] is used. It derives the center position, the semimajer axis,
and the rotation of the ellipse from two randomly chosen points. Then, a third point is
chosen to determine the fourth parameter of the ellipsis. Using all remaining points for
this third point then gives a voting table for different ellipse parameters, among which
the best ellipse is used. This is similar to a normal Hough transformation for ellipses,
but the dimension of the search space is reduced to one for each pair of points.

This algorithm can be speed-up by combining it with a RANSAC[Fischler and
Bolles, 1981] approach. Not all pixels are evaluated but only randomly chosen ones un-
til the ellipse is ”good enough“. To further reduce the inputdata, the gradients received
from the Sobel operator can be used. As the holes are dark, only pixels with oppos-
ing gradient vectors should be used for the first two pixels inthe algorithm. We are
confident that these improvements are sufficiently accelerating the detection enabling
real-time detection of hole structures in the environment.Finally, detected ellipses are
utilized by the mapping system for marking potential victimlocations in the map.

8.3 Victim Detection from Vision

While the robot is moving we perform heat detection with the thermal camera trying to
find victims that are directly visible.

We use laser range information to detect walls and discard parts of the image that
are higher than 1.2 meter and would cause problems like lights or spectators outside
the arena boundaries. With this aproach we avoid false positives and reduce the com-
putation power of our algorithm getting a higher frame rate.After thresholding the heat



(a) (b)

Fig. 6.Camera picture of three adjacent circles that are a possiblelocation for victims. (a) Original
camera image as input. (b) Same image after edge detection using the Sobel edge detection.

image we use a two pass connected component labeling algorithm to build the heat
blobs. Small blobs are discarded and large blobs are sent to the mapping system to be
positioned in the map and clustered to find victims.

Finally, the thermal camera is used to look inside holes and determine if a victim is
inside or not.

9 Robot Locomotion

For locomotion we have implemented a reactive controller responsible for steering the
robot around obstacles and towards a goal position. The controller works as follows:
The space in front of the robot is searched for directions that are not obstructed by
obstacles. To evaluate in which direction the robot can movefreely, the controller tries
to fit a driving channel in all possible directions using scans of the main laser range
finder (see Figure 8). A driving channel always starts from the position of the robot and
extends in the investigated direction. The channel has a fixed width, slightly bigger than
the width of the robot, and a variable length equal to the distance to the nearest obstacle
in the area covered by the channel. Channels that point in thedirection of the goal
position are considered better than channels leading away from it, and so are channels
that minimize the amount the robot has to turn.

The channel can be parameterized for specifying the width directly in front of the
robot and the width at the extent of the channel. Additionally, the minimum allowed
length under which a channel is not considered useful can be set, as well as the maxi-
mum channel length at which all channels are capped.

To steer the robot through the best channel that was found, the velocity of the robot
is set according to the length of the channel normalized by the maximum channel length,
and the robot turns to face in the direction of the channel. Besides the driving channel
the controller takes inertial information about the robot’s pitch and roll angle into ac-
count to adapt to the current situation.



Fig. 7.Thermal camera picture of a corridor with three persons. Theblue zone is discarded thanks
to the information of the range laser.

Fig. 8. The figure displays the reactive controller. The driving channel is shown in orange and
the endpoints of the laser scan are shown in red. As can be seen, the controller steers the robot
through the gap between the wall and an obstacle.



10 Other Mechanisms

10.1 Mission Control System

Fig. 9. An example of a top-level timed automaton for mission control.

The mission controlconnects all other on-line systems of the robot together by
monitoring their states and sending new commands. It is implemented as a set of timed
automata.

Figure 9 shows an exemplary top-level timed automaton. Referring to this as an
example, the robot will startautonomousexplorationafter the desired setup has been
loaded. Whenever an on-line system (which may be e.g. thermal vision or the user
interface) signals a new point of interest, the mission control checks whether it is im-
portant enough to be checked and acts accordingly. To reach the desired location, a sub-
procedure sends commands to the software which controls therobot’s motion. Once
arrived, other sub-procedures also modelled as timed automata manage the analysis of
the point of interest, e.g. by driving towards it or moving the manipulator, in order to
search for a victim.

Using this architecture, the mission control system remains well-arranged and main-
tainable. It is used to implement various behaviors for different situations the robot may
encounter and is based on system-wide available parameters(states and commands)
served by a parameter daemon. Each on-line system delivers its own state to the dea-
mon and listens for commands.

11 Team Training for Operation (Human Factors)

For the development of autonomous robots a sufficiently accurate physics simulation is
absolutely necessary. Therefore, we utilized the USARSim simulation system[Wanget



al., 2005], which is based on theUnreal2004game engine (see figure 10 (a)) for sim-
ulating and developing the autonomous behavior of our robots. We have demonstrated
the feasibility of this approach in the context of the proposed inter-league-challenge.
Previous to Robocup German Open 2009 we developed SLAM and controller algo-
rithms solely in the simulation without access to the Matilda robot. At the robocup site
within three days of adaption we could reach stable autonomous driving in the yellow
arena.

For real-world experiments we rebuild a rescue arena from standardized elements
to test tele-operation and autonomous control.

(a) (b)

Fig. 10. (a) shows the simulated Matilda in USARSim, based on the Unreal2004 game engine.
(b) shows a part of our real-world test arena.

12 Possibilities for Practical Application to Real Disaster Site

Our team had no direct experience with any practical application in the context of real
disaster response. However, we are confident that some of thetechniques utilized by our
team are very useful in the context of USAR. Within several efforts we are cooperating
with NIST towards the goal of developing standards for benchmarking autonomous
robots, particularly in the context of rescue and security.

Especially our mapping system has been demonstrated in the response robot exer-
cise in Disaster City and is currently integrated into a commercial robot.

13 System Cost

The following table lists the approximate costs for our robot.



Name Part Price in USD Number Price Total in USD

Robot Base Matilda Element 10000 1 10000
Manipulator Schunk 5-dof 54000 1 54000
IMU XSens Mti 2000 1 2000
Laser Range FinderHokuyu URG-04LX 1600 1 1600
Laser Range FinderHokuyu UTM 30 4500 1 4500
Thermo Camera Thermal Eye 5000 1 5000
Laptop Lenovo X61 3000 1 3000
USB Camera PointGrey Chameleon 375 1 375
Sum Total: 80475

Table 1.Costs for theMatilda robot.
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