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Universitätsstr. 1
56070 Koblenz, Germany
svetter@uni-koblenz.de

http://robots.uni-koblenz.de

Abstract. This paper describes the approach of the team
resko@UniKoblenz for the RoboCup Rescue competition 2010.
Our mobile system Robbie is based on a MobileRobots Pioneer 3 AT. It
is equipped with a four-wheel drive and sonar sensors in the front and in
the back. On this platform, an aluminum rack is installed where addi-
tional sensors are attached: three color cameras (Philips SPC1300NC),
an actively contolled Hokuyo UTM-30LX laser range finder (LRF), a
thermal camera, a multi-level thermal sensor and an inclination sensor.
The robot can be operated in autonomous and in teleoperated mode.
The map building is done by the computer automatically by merging
the collected LRF data with the odometry information using a Hyper
Particle Filter (a particle filter of particle filters). The automatic victim
detection is based on the obtained thermal and color camera images.
Robbie was developed and improved at the University of Koblenz-Landau
(Germany) during the last couple of years as a PhD project and in several
practical courses. The robot was used by the team resko@UniKoblenz at
the RoboCup German Open 2007, 2008 and 2009 in Hannover and at
the RoboCup World Championship 2007 in Atlanta (GA, USA), 2008
in Suzhou (China) and 2009 in Graz (Austria). The team achieved the
“Best in Class Autonomy Award” in five of these competitions.

Introduction

The team resko@UniKoblenz is a group of researchers and students from the
University of Koblenz-Landau, Germany. In 2010, we compete, together with
our robot Robbie, in the RoboCup Rescue league.

1 Team Members and their Contributions

The team resko@UniKoblenz with focus on the RoboCup Rescue league consists
of the following members:
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– Sebastian Vetter: team leader, scientific advisor
– Johannes Pellenz: SLAM, scientific advisor
– Dagmar Lang: 2D/3D mapping
– Marcel Häselich: 2D/3D mapping, senor data fusion

– Christian Fuchs: thermal imaging, victim detection

2 Control method and Human-Robot Interface (HRI)

Our robot navigates through the yellow part of the RoboCup Rescue Arena
autonomously. The robot is started by the operator from the operator station;
afterwards the operator can monitor the robot and the sensor data, which is
sent to the operator station via WLAN. In case of an emergency, the operator
can stop the autonomous mode and teleoperate the robot. If the connection to
the operator station gets lost, the robot continues its mission and the victim
search. As soon as the connection is re-established, the victim verification on the
operator station is triggered.

The graphical user interface (GUI) of the operator laptop is shown in
Fig. 1(b). The human-robot interface is implemented in Qt4, with OpenGL wid-
gets for visualizing easy-to-understand 3D views of the sensor data. The operator
sees all sensor measurements, the color images and the last thermal image on a
single screen. The current laser and sonar range readings are merged into the
already learned map in the lower left part of the windows. In the upper part of
the window, the images of the color cameras and the thermal image are shown.
The operator can mark the position of victims in the map manually. In the
autonomous mode, a dialog pops up when the robot has found a victim. This
(potential) victim can then be verified or declined; the position is automatically
marked in the map. Additionally, the robot has a blue flashing light that indi-
cates the detection of a victim. This shows the audience that the victim search
was successful.

3 Map generation/printing

While exploring the environment, the robot automatically generates a map of
the building. The map is based on the laser scans and the odometry information.
Fig. 3 shows the result of the mapping process.

The data structure to store the map is a single occupancy map. In the con-
text of RoboCup Rescue, the grid usually has a size of 800 × 800 cells, which
represents a map of an area of 40 × 40 meters with a grid cell size of 50 × 50 mm.
The grid is stored in two planes: one plane counts how often a cell was “seen” by
a laser beam. This value is increased either if the laser beam measured the cell
as free or as occupied. A second plane stores the information how often a cell
was seen as occupied. By dividing these two planes, the occupancy probability
for a cell ci is calculated as the following ratio:

pocc(ci) =
countocc(ci)

countseen(ci)
(1)
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(a) Our Pioneer 3 AT-based robot Robbie. (b) User interface of the operator station.

Fig. 1. The mobile system Robbie and the user interface.

(a) thermo pile (b) ThermoStick

Fig. 2. thermo pile mounting (a) and sketch of the ThermoStick (b).

To solve the SLAM problem, we use a particle filter [IB98] with about
1,000 particles [Pel08]. Each particle represents a hypothesis for the pose of
the robot in 2D-space: (x, y, Θ)T . Fig. 4 illustrates the robot pose hypotheses,
represented by particles.

The algorithm of the particle filter includes the following steps: resample,
drift, measure, and normalize. The result is the most likely pose of the robot
when the laser scan was taken. This pose is then used for the map update. An
ICP (Iterative Closest Point) scan matcher with different metrics improves the
pose estimation (which is the input for the particle filter) that is based on the
odometry of the robot.
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Fig. 3. Map of the Yellow Arena. The blue line shows a planned path back to an
unexplored room in the upper right corner (generated at the RoboCup German Open
2008 during the Mapping Mission).

(a) Particles (in the center of
the image).

(b) Detailled view of the par-
ticles.

(c) Weights of the particles.

Fig. 4. Robot poses, represented by particles. The poses are visualized in real time in
the user interface.

Resample: Depending on the weight of the particles (generated by the last mea-
surement step), the probability distribution is adjusted. The resampling step is
only done if the robot moved a certain distance (at least 20 mm) or turned (at
least 5◦) since the last mapping step.
Drift : During the drift step, the particles are moved depending on the odometry
data and the result of the scan matching. It also models noise due to sensor
inaccuracies and wheel slippage (see [HBFT03]).
Measure: During the measurement step, new weights for each particle are cal-
culated using the current laser scan. To weighten a particular particle, the end-
points of the laser beams are calculated, using the robot pose stored in this
particle. We use a subsampling of the laser data: Only laser beam endpoints,
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that are at least 10 cm away from the last considered endpoint are used for the
weighting function. This speeds up the measurement function significantly.

Normalize: The assigned weight of a particle is a sum of occupancy probability
values. During the normalization step, the weight of each particle is divided by
the sum of all particle weights.

Map update: The average pose of the top 5% particles with the highest weight
is assumed to be the location of the robot. Using this pose, the current laser
range scan is added to the global occupancy map by constructing a local map
and “stamping” it into the global map, incrementing the counts for seen and
occupied cells (cf. equation 1).

We use a Hyper Particle Filter (HPF) [PP09] – a Particle Filter of Parti-
cle Filters – for solving the SLAM problem. Each particle of the HPF contains
a standard localization Particle Filter (with a map and a set of particles, that
model the belief of the robot pose in this particular map). To measure the weight
of a particle in the HPF, we developed two map quality measures that can be
calculated automatically and do not rely on a ground truth map: The first map
quality measure determines the contrast of the occupancy map. If the map has
a high contrast, it is likely that the pose of the robot was always determined
correctly before the map was updated, which finally leads to an overall consis-
tent map. The second map quality measure determines the distribution of the
orientation of wall pixels calculated by the Sobel operator. Using the model of
a rectangular overall structure, slight but systematic errors in the map can be
detected. Using the two measures, broken maps can automatically be detected.
The corresponding particle is then more likely to be replaced by a particle with a
better map within the HPF. Using this technique, broken maps are very unlikely.
Also, the problem of loop closing is solved (see Fig. 6).

The resulting map is displayed in realtime on the operator station. After the
mission, it can be printed out and handed to the responders. To make a step
further to standardization, we can also export our map as a GeoTIFF file, which
e. g. can be copied on a USB stick.

NEW in 2010: In addition to the 2D mapping with the HPF we generate
experimental 3D maps. An ICP with 6 DoF will be used to generate the 3D maps.
During ICP closed loops are detected and a graph of pose relations is built. To
obtain globally correct 3D maps a GraphSLAM algorithm will be used.

4 Sensors for Navigation and Localization

4.1 Odometry data

The Pioneer robot has a built-in system to report the robot pose (x, y, Θ)T , based
on the readings from the wheel encoders. However, our experiments have shown
that the data is quite unreliable, and the errors sum up over time. Therefore
this data can only be used to make a rough guess about the robot location and
orientation.
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Fig. 5. The principle of the Hyper Particle Filter: The particles of the Hyper Particle
Filter are standard SLAM Particle Filters (with a map and particles that represent
robot poses). For the measurement step, the quality of each map is evaluated.

(a) Situation right
before the loop
closing.

(b) The robot
scans areas that it
has visited before;
first errors in the
map are visible.

(c) The HPF
closes the loop
by switching to a
consistent map.

Fig. 6. Successful loop closing using a Hyper Particle Filter (HPF) with 30 particles.

4.2 Sonar sensors

Our Pioneer 3 AT robot platform has two sonar rings (one scanning the front
and one scanning the back) with eight sonar sensors each. In total they cover
360◦, but with larger gaps between the sensors. The sonar sensors are used
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for collision avoidance and their data is displayed in the GUI to make remote
controlling easier. The data is used to generate a sonar echo map in addition to
the laser map.

4.3 Laser scanner

The Hokuyo URG-04LX laser scanner generates 240◦ scans that measure the
distance ( up to 5.60 meters) of the closest objects. The resolution of the laser
scanner is 0.36◦. The operator interface shows these scans with respect to the
robot’s position. With this information the operator is able to estimate distances
to obstacles better than with video images only. The scanner is attached to the
front of the robot as shown in Fig. 8(a). Detected obstacles (such as walls) are
continuously integrated into the map.

5 Sensors for Victim Identification

5.1 Vision System

Robbie has a vision system with 3 cameras mounted at the front. Two Sony
cameras (DFW-X700 and DFW-X710) are adjusted along the robot’s moving
direction. In teleoperated mode, the operator uses the images of these cameras
to detect victims visually. A ring of LEDs allows to search also in dark areas
(such as the interior of boxes). In addition to the high resolution vision system
we have a single webcam mounted at the robot’s front at a very low level. We
use this camera to recognize small obstacles that are right in front of the robot.
This camera is also useful to detect victims that are placed in boxes on floor
level.

5.2 Thermal Sensors

NEW in 2010: We show a new approach regarding our thermal sensors for
victim detection. In order to meet the inclined requirements of the yellow arena,
we designed a new form of sensor arrangement. The basic components used for
heat detection are three TPA 81 infrared piles. They measure temperature in
absolute values with a resolution of 8 pixels per pile. The piles are mounted
on a newly designed device that we call a ThermoStick. The ThermoStick is a
vertically aligned pipe-shaped device mounted in the front of the robot. It has the
three infrared piles attached to the pipe from the inside. This arrangement allows
for maximizing the field of view on the victim boxes even from close distances.
A panoramic image is generated using the ThermoStick by rotating it around
the z-axis. The captured slice images are then combined into one panoramic
image. This provides us with an overview heat map of the environment without
requiring to move the robot. We use the resulting heat map to detect victims
autonomously based on their heat signatures in the panoramic images.
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6 Robot Locomotion

The Pioneer 3 AT is a robot equipped with four air-filled tires. They are driven
by 4 DC motors (12 volts). We control them by using the programming library
(called ARIA) provided by the manufacturer.1 Apart from the autonomous op-
eration, we implemented a gamepad and a keyboard control.

7 Other Mechanisms

7.1 Active Adjustment of the Laser Range Finder

Rescue robots are usually used in unstructured environments with uneven floors
and piles of debris. Therefore the sensor readings might be spurious if the sensors
are rigidly coupled to the robot. The influence of uneven floor are simulated at
the RoboCup since the German Open 2007 using 10◦ pitch/roll ramps. These
ramps influenced the LRF data in three different ways:

1. The measured distance to an obstacle slightly changes by the factor of 1
cos α

compared to the real distance, where α is the pitch angle of the robot relative
to the ground.

2. The obstacle is not detected at all, since the sensor pointed above the object.
3. “Phantom walls” were detected, since the sensor detected the next pitch

ramp as an obstacle.

These problems are illustrated in Fig. 7: While 7(a) usually adds only a small
error (about 1.5% at 10◦), 7(b) and 7(c) result in inaccurate occupancy maps.
Case 7(c) can cause the robot to avoid a free path, because the map blocks its
way with a phantom obstacle.

Therefore, we adjust the orientation of the LRF based on the readings from a
gravity sensor [Pel07]. The sensor measures the current orientation of the robot,
and the orientation of the LRF is corrected so that it always scans horizontally
(see Fig. 8(a)). On our mobile system, we use a cheap dual-axis (2D), up to
2 g accelerometer. The correction information is sent to a microcontroller which
controls two servo motors that adjust the orientation of the LRF. In Fig. 8, a
map based on data of a fixed LRF (Fig. 8(b)) and a map based on data of an
adjusted LRF (Fig. 8(c)) are shown. The latter map shows a higher accuracy
and much less artefacts.

7.2 Terrain classification

Due to its limited mobility the robot must stay out of rough terrain as simu-
lated with the stepfields in the Orange Arena. Therefore, the robot performs 3D
scanning every 2 meters, to locate boundaries to impassable areas. The 3D scans
are acquired with same (adjusted) LRF that is used for the 2D localization and
mapping. The scan is analyzed as follows:

1 http://www.activrobots.com/SOFTWARE/aria.html
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Fig. 7. Correct (d) and measured (d′) distances to walls due to ramps. (a): slightly in-
correct measurement. (b) and (c): incorrect measurements that cause serious problems
for the localization and the mapping.

(a) The Hokuyo URG-04LX laser
range finder (LRF), mounted on a
rotation/tilt-unit.

(b) Map generated from data of a
rigidly coupled LRF.

(c) Map generated from data of an
adjusted LRF.

Fig. 8. The gimbal-mounted Hokuyo URG-04LX laser range finder (a) and the effect
on the mapping: Map without (b) and with (c) adjustment. The map based on the
data acquired by the adjusted LRF has more aligned walls and less artefacts.

1. Each point of the local scan is assigned to a grid cell (of size 100× 100 mm) on
the x/y-plane (the x/y-plane is parallel to the ground).

2. For each grid cell ci, the variance in z (the height), as well as the the lowest and
the highest z value is computed (σ2

z,i, minz,i and maxz,i). Also, the number of
points in each cell is counted (#i).

3. A cell is assigned one of three classes, depending on the precalculated parameters:

class(ci) =

8

<

:

unknown, if #i < minCnt,
occupied, if (σ2

i > maxVar) ∧ ((maxz,i − minz,i) > maxStep),
free, else.

(2)
The values for the thresholds were determined experimentally and are set to:
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minCnt = 10, maxVar = 182 and maxStep = 80 (all distances in mm).
4. Finally, using the current pose of the robot, the world coordinates of all cells

of class occupied is calculated and stored in a 2D grid, the ”inaccessible grid“:
inaccessible(localToWorld(ci)) = true

An example of classified terrain is given in Fig. 9.

(a) 3D scan of a stepfield (b) Same scan; sectors classified as driv-
able or not

Fig. 9. Example of a 3D scan of the laser range finder.

7.3 Path planning: The Exploration Transform

By combining Yamauchi’s frontier based exploration [Yam97] with Zelinsky’s
path transform (see [Zel88,Zel91]) an elegant solution for the exploration problem
can be achieved: the path transform is extended in a way that not the cost of
a path to a certain target cell is calculated, but the cost of a path that goes to
a close frontier (the boundary between known and unknown areas). The path
is not necessarily the shortest and the frontier not necessarily the closest, since
the cost is determined by the travel distance and the safety of the path. The
overall formula of the Exploration Transform [WP07] is given in (3); it yields for
a given cell c the frontier cell that is close and save to reach:

Ψ(c) = min
cg∈F

(

min
C∈χ

cg

c

(

l(C) + α
∑

ci∈C

cdanger(ci)

))

(3)

with F the set of all frontier cells, χ
cg

c the set of all paths from c to cg, l(C)
the length of the path C, cdanger(ci) the cost function for the “discomfort” of
entering cell ci, and α a weighting factor ≥ 0. The Exploration Transform has the
favorable property that by construction no local minima can occur. Therefore,
from each cell a path to a close frontier can directly be extracted. Compared
to the path transform, the Exploration Transform performs a search over all
possible frontier cells. More details can be found in [WP07].
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8 Team Training for Operation (Human Factors)

The training required to use our system consists of knowing how to turn on
the robot (and its devices) and how to start the application. Only a minimum
amount of training is needed for using the GUI due to the intuitive representation
of the data.

We mainly use log files (recorded at various RoboCup events) to test and
enhance our software (e. g. the map building algorithms) and also to train people
to use the application.

9 Possibility for Practical Application to Real Disaster
Site

We don’t have any practical experience with real disaster sites yet, except the
participation at the Response Robots Exercise 2008 in College Station, Texas,
USA. So far we did not focus on mobility, but on precise mapping, autonomous
exploration and a suitable presentation of the data to the operator. Our robot
is incapable to drive through difficult terrain, which is covered with large pieces
of debris. However, because of the four-wheel drive it is still able to drive on
slippery ground as long as the ground is not too steep.

10 System Cost

The total price of the robot including all sensors is 23,552 EUR (which is
approximately 30,400 USD). The detailed prices are listed in Tab. 1.

Article Type Price
Notebook NEXOC Osiris, (T7800, 2 GB RAM) 1,200 EUR
Robot Pioneer 3-AT 6,050 EUR
Laser Range Finder Hokuyo UTM-30LX 3,150 EUR
Thermal camera ThermoVision Micron/A10 10,000 EUR
3 Thermal sensors TPA 81 230 EUR
3 Webcams Philips SPC1300NC 240 EUR
3 Servos Dynamixel RX-10 285 EUR
1 Dynamixel Adapter USB2Dynamixel Adapter 90 EUR
1 Dynamixel Power Adapter SMPS2Dynamixel Power Adapter 15 EUR
Microcontrollers Crumb8-USB 60 EUR
USB Hub 4 port USB hub 30 EUR
Access point Linksys WAP55AG 100 EUR
Aluminum rack Maschinenbau Kitz 400 EUR
Misc. electronic parts – 200 EUR
Blue flashing light – 3 EUR
Total 22,053 EUR

(The total price is approximately 30,730 USD)

Table 1. Detailled prices of the components of Robbie
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11 Lessons Learned
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