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Abstract. In this Paper, the main features of the eeeBot Rescue Robot have 
been described. It is a fully autonomous robot. Contribution of each team mem-
ber has been specified and details about the control method, sensors used, navi-
gation and localization methods, map generation, robot locomotion, path plan-
ning and victim identification methods have been explained. The set of sensors 
being used enable the system to work effectively and autonomously in a disas-
ter site.  

Introduction 

 
In real disaster situations, it is very important for rescue operation to be quick in order 
to save lives of victims. So it would be quite useful to have autonomous systems 
which can assist rescue teams to perform rescue operation. The basic aim of the Ro-
boCup Rescue league is to develop such autonomous systems that can effectively 
work in case of natural calamities like earthquakes that are dangerous for human 
rescuers while at the same time rescue operation should be fast and accurate. The 
rescue robot should be able to navigate efficiently in unknown environment without 
prior knowledge of the site. Autonomy is of great importance in search and rescue 
robots as human control has its limitations like negligence and inefficiency of opera-
tors. At the same time, the rescue robot should be convenient for onsite deployment 
and modification. 

 
Hence, we’ve been focusing on developing a reliable autonomous system for real 

disaster situations. The eeeBot is a four-wheeled autonomous mobile robot suitable 
for the yellow arena. CO2 gas sensor, thermal camera and optical camera are imple-
mented for victim identification. As the robot moves, the laser scanner senses obsta-
cles in robot’s neighbourhood, helps in building a map simultaneously and demon-
strating robot’s location. 

 
 



In the following sections, we have provided detailed explanations of our tech-
niques and implementation. 

 

1. Team Members and Their Contributions 

• Wang Han         Team leader 
• Shantanu  SinghSingh          Saliency detection

  
• Maruvanda Aiyappa Chengappa  Boundary detection 
• Wang Junling    Hand Detection   
• Tay Zhixiong    Body Detection 
• Mohamed Thalal Mohamed Thoufeek         Thermal Detection &  

Arm Movement Control 
• Sun Mouxuan    3D map 
• Reeti Burman         CO2 detection and SLAM 
• Wang Xian          Thermal Detection and SLAM 
• Wang Jiao     Motor Drive 
• Han Aiguo     Motor Drive 
• Li Yang     SLAM 
• Guo Guibing      Laser Sensor and 

SLAM 
• Yang Qianwen         Localisation module 
• Adrian How Wei Liong   Hand Detection 
• Cham Jun Wei Alan Toshihito   Hardware 
• Neo Kok Chuan    Hardware/Software 
• Chia Chiu Kiat    Hardware 
• DIP group(20 people)   Hardware/Software 

2. Operator Station Set-up and Break-Down 

N/A 

3. Communications 

N/A 



4. Control Method and Human-Robot Interface 

This design is a fully autonomous rescue robot with an auxiliary Human-Machine 
Interface enabling fast field deployment and on field adjusting. This system can be 
switched to semi-autonomous or manual override mode during debugging, however, 
in practical field work; this system is always working in fully autonomous mode, with 
no telecommunication cable or radio remote control channel. Such design decreases 
its dependency on field conditions, increasing its reliability and robustness. 

5. Map generation/printing 

This design uses a 3 stage solution to implement odometry sensing, SLAM and path 
planning; all three of them are based on laser scanner sensing data only, with no en-
coder on board. 

5.1   Odometry sensing 

Odometry sensing compares different frames between scans. The laser scanner keeps 
scanning surrounding obstacles, generating relative maps simultaneously. Without 
considering the error in scanning, the difference between each scans can be described 
with a translation and a rotation, which can be depicted with a vector (x, y, Theta). 
This vector represents the movement of scanner or robot between each scan, that is, 
the odometry. 
 

However, we do have errors in scan data. Such error can be approximated with 
Poisson Distribution or discrete Gaussian Distribution. We use a 3-D search space to 
describe different odometry vectors which is possible in specified movement; differ-
ent values of element mean different possibilities of certain movement vector. The 
global maxima point of this search space would represent the most possible vector. 

 
We made use of Distance Transformation in determining space elements, which is 

a 3 step algorithm. First, apply an odometry vector upon the original scanning map, 
generating another map that is similar to the map of the following scan to a certain 
extent. Second, determine distance between key points on transformed map and the 
skeleton of the following scan at all 8 directions. All distance values are added to-
gether to generate value of certain element corresponding to odometry vector. City 
block distance was used instead of Euler distance to avoid huge amount of comput-
ing. The final step is to search and find out the global maxima of search space, whose 
position denotes the odometry vector of maximum possibility. In light of the Gaus-
sian Distribution of scanning errors, this search can be done with linear search algo-
rithm from a certain start point, which can be determined with raw command values 
from the motion control module. The 3 steps are carried out simultaneously and re-
peatedly, estimating odometry vector after executing each motion command. 



5.2   SLAM 

The odometry sensing stage determines the most possible odometry vector from com-
paring two adjacent laser scanning maps, while SLAM stage crawl among large 
amount of simultaneous scanning data and estimated odometry data which is pro-
vided by odometry sensing stage to determine more accurate odometry data along 
with estimated global maps. 

 
The SLAM algorithm used in this design is DP-SLAM 2.0 which was developed 

by Duke University. DP-SLAM is a kind of inherited particle SLAM algorithm. Input 
parameters of this algorithm are roughly estimated odometry data and corresponding 
laser scanner data, while output of the algorithm are low level & high level maps, 
along with more accurately estimated odometry vectors.  

 
Particle filter SLAM treats dots in laser scan data as particles; higher probability of 

obstacle means particles with more weight. Particles carry global coordinates and 
weights and would be added up together to denote a final probability map of obsta-
cles. Detailed implementation of particle filter also requires low weighted particles be 
filtered out in order to decrease uncertainty. The SLAM algorithm determines odome-
try vector according to relative movement to estimated map of scanner origin. 

 
Inherited SLAM is a 2 level algorithm. The low level is the basic particle SLAM 

algorithm, with raw scan data converted to particles. Therefore, particles in low level 
SLAM contain global coordinate and probability of possible obstacles, generating 
only regional map with little movement range of robot. However, a high level SLAM 
is used to generate a more accurate map of environment, which would avoid prob-
lems of accumulating error brought by odometry errors. High level SLAM uses parti-
cles carrying data from regional maps, which are combined together to generate 
global maps. Therefore, particles in high level SLAM are mostly used to depict key 
points in regional maps, while the combining procedures are mostly focused on solv-
ing translation, rotation and skew problems at the patch areas. 

 
The final map submitted for printing is adjusted global map, which is generated by 

high level SLAM. Different colors on map indicate different situations: possible ob-
stacles, clear grounds and undiscovered areas. 

5.3   Path planning 

Path planning module focuses mostly on 1) make the robot explore undiscovered 
areas to find obstacles and victims; 2) keep the robot away from known obstacles; 3) 
make it possible for the robot to reach specified position on the map. 
 

We are using VFH (Vector Field Histogram) method to realize the first two points 
and A* to realize the last point. 

 



VFH is a kind of obstacle avoiding algorithm, which is improved to provide ability 
on navigating into the unknowns. VFH uses different values to represent obstacle, 
clear area and undiscovered area. Different areas can be assigned values according to 
global map build in SLAM stage. In this solution, obstacles can be assigned 1, clear 
area can be assigned 0 and undiscovered area can be assigned -1. The algorithm cre-
ates a vector field polar histogram with an optimized formula, which is further used to 
determine the best direction for the robot to travel. In this case, the robot should travel 
in direction which has lowest histogram value. 

 
A* algorithm is a kind of heuristic static shortest path algorithm, which is used in 

finding path on pre-determined static map, that is, networks and routines on map 
should remain the same while time period changes. Such condition is satisfactorily 
fulfilled in this application. Therefore, after generating the final global map, A* algo-
rithm can be used to navigate back to pre-defined navigation points such as victims or 
key corners. 

6. Sensors for Navigation and Localization 

This design uses only a laser scanner to act as navigation & localization sensor. The 
laser scanner can provide range data of nearest obstacle in a sector of 270 degrees at 
0.5 degree interval. In this design, the laser scanner is set to work once the robot stops 
after executing the last movement command. The scan data is then provided to odo-
metry sensing module and SLAM module to determine the actual movement of the 
robot and sketch fine tuned map. 
 

The laser scanner is connected to one of the on board computers with RS-232 
connection, our driver provides a unique interface to upper level programs. 

7. Sensors for Victim Identification 

For victim identification, we have used sensors which are explained below. 

7.1   Thermopile Array TPA81 to measure victim’s temperature 

The TPA81 is a thermopile array detecting infra-red in the 2um-22um range. This is 
the wavelength of radiant heat. The TPA81 can measure the temperature of 8 adjacent 
points simultaneously. The typical field of view of the TPA81 is 41° by 6° making 
each of the eight pixels 5.12° by 6°. The array of eight pixels is orientated along the 
length of the PCB. All communication with the TPA81 is via the I2C bus. Since there 
is no I2C port on the PC, the TPA81 is interfaced using a I2C-USB interface module. 
The 5V Vcc is supplied through the USB interface device. 



 
Fig. 1. Thermopile Array TPA81. 

 
The TPA81 appears as a set of 10 registers. There are 9 temperature readings 

available, all in degrees centigrade (°C). Register 1 is the ambient temperature as 
measured within the sensor. Registers 2-9 are the 8 pixel temperatures. Temperature 
acquisition is continuously performed and the readings will be correct approx 40mS 
after the sensor points to a new position. 

 

 
 

Fig. 2. Registers. 
 
The USB-I2C module provides a complete interface between your PC and the I2C 

bus. The module is self powered from the USB cable and can supply up to 70mA at 
5v for external circuitry from a standard 100mA USB port. 
 



 

 
 

Fig. 3. USB-I2C interface module. 
 
 

 

 
 

Fig. 4. I2C Connections. 
 

The algorithm for temperature measurement has been done in Visual Studio C++.  

7.2   Infrared gas sensor (carbon dioxide sensor) 

The Vernier CO2 Gas Sensor measures gaseous carbon dioxide levels by monitoring 
the amount of infrared radiation absorbed by carbon dioxide molecules. It has two 
settings: low range (0–10,000 ppm) and high range (0–100,000 ppm). Exhaled human 
breath has a carbon dioxide concentration of about 50,000 ppm. So the high-range 
setting, 0–100,000 ppm, can be used for measuring human respiration for victim 
identification. The sensor can make measurements from a distance of about 5 cm (2 
inches) from the subject to be tested. 
 

The sensor uses an LED as the source to generate infrared radiation (IR). The IR 
source is located at one end of the sensor’s shaft. At the other end of the shaft is an 
infrared sensor that measures how much radiation gets through the sample without 
being absorbed by the carbon dioxide molecules. The detector measures infrared 



radiation in the narrow band centered at 4260 nm. The greater the concentration of 
the absorbing gas in the sampling tube, the less radiation will make it from the source 
through the sensor tube to the IR detector. The temperature increase in the infrared 
sensor produces a voltage that is amplified and read by a Vernier interface. Carbon 
dioxide gas moves in and out of the sensor tube by diffusion through the twenty vent 
holes in the sensor tube. 

 
 

 
Fig. 5. Vernier CO2 Gas Sensor. 

 
 

The sensor has been used with an interface, the Vernier Go!®Link, to collect data. 
The sensor is connected to the input of the interface and the output of the interface is 
directly connected to the USB port of the computer. Logger Lite is the data-collection 
software which has been used with this interface. 
 

 
Fig. 6. Vernier Go!®Link interface. 

7.3   Logitech PC Camera C905 

A USB camera which is capable of human limbs detection is embedded on the robot 
to locate the victim. It can also be used to capture images of the victim’s situation and 
report to the operator. 
 

The rescuing-robot with embedded camera will explore the field and look for pos-
sible signs of life in the vicinity. The embedded camera is capable of capturing and 



identifying human limbs. Once there is a victim in the vicinity and it is captured by 
the robot’s camera, say a palm figure, the camera is able to identify it and send the 
data to the robot. The mechanism is very similar to face-detection or face-recognition 
function in a commercial digital camera in the marketplace.  
 

The technical specifications of the camera are: Carl Zeiss® optics with autofocus, 
Native 2MP HD sensor, HD video capture (up to 1600 X 1200*), Up to 8-megapixel 
photos (enhanced from native 2MP sensor), Microphone with Logitech® Right-
Sound™ technology, Up to 30 frames per second video and Hi-Speed USB 2.0 certi-
fied. 

8. Robot Locomotion 

A 4-wheel differential driving solution is implemented on this design. Each wheel is 
driven with its own DC motor with gear case. The speed is roughly controlled by 
PWM with solid state relays (SSR) on each wheel motor. However, as the fraction of 
ground may not be same, the 4 wheel driving method might be a bit inaccurate. Such 
could be compensated by odometry sensing and SLAM modules. 

9. Other Mechanisms 

An arm is mounted on the body of the robot. The robot arm basically acts as a human 
arm with hand. The joints of the arm are controlled via Dynamixel servos, one RX28 
and one RX64. Communication to the servo is via the USB-RS485 Port. The sensor 
and camera are going to be mounted at the end of the arm. Instruction packets are sent 
to make the necessary movement of the arm.  

10. Team Training for Operation (Human Factors) 

N/A 

11. Possibility for Practical Application to Real Disaster Site 

There may be many factors in a real disaster situation which we might not have taken 
into consideration. Yet, our attempt is to design and implement a reliable rescue robot 
which can be used in a real disaster situation like in the event of natural calamities 
such as earthquakes.  However in situations such as fire, the human detection module 
might be unable to work properly due to CO2 and heat emission of fire itself other 
than human body. In such case, a more expensive thermal camera should be used 
instead the thermal scanner we are implementing now. 



12. System Cost 

The overall expense of our system is Singapore $5000.  The costs of the key system 
components are given in the table below. Some other mechanical parts have also been 
used apart from the mentioned components. 

 

Table 1. Price list of parts used 

Product No. Price per piece Distributer 
Robot 1 S$500  
Vernier CO2 gas sensor 1 S$300 www.vernier.com 
Temperature Sensor 1 S$200  
Hokuyo Laser Scanner 1 S$1200 www.hokuyo-aut.jp 
DC Motors 4 S$300  
Computers 2 S$500  

13. Lessons Learned 

The robot was designed from scratch and a few attempts have failed due to the fact 
that step motors cannot carry heavy loads. On top of that, the vehicle’s centre of grav-
ity should be kept low in order for it to move on slopes. 

 
For the software part, we have tried a few strategies on SLAM and initial results 

are promising. The robot is made without odometry sensors; hence the SLAM algo-
rithm must cater for it. 
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