
Phoenix Rescue Team: An Agent Paradigm and
Implementation

Zijian Ren
zijian.ren@gmail.com

1. Introduction
Agents are autonomous entities which can sense from and act on environment. An agent
could represent a software program, a robotic control system or an entire robot. We
propose a general agent paradigm and implement our Phoenix rescue agents with this
paradigm. This general agent paradigm is not only applied for rescue domain, but also for
other domains such as foraging and exploration.

In following paragraphs, we first describe this agent paradigm and the formal agent
design method. Then, we describe our implementation in communication, knowledge
base, and action control. Conclusion is presented in the last section.

2. A General Agent Paradigm and Design
The agent paradigm consists of five major components: Sensing (S), Control Unit (CU),
Knowledge Base (KB), Action (A) and Communication (C) in figure 1. The control unit
can be roughly divided into three modules: action control, knowledge acquisition and
usage, and communication control. The communication component includes two parts:
messages from other agents and messages to other agents. The knowledge base is the
most complex part in the whole paradigm.

Besides the above modules, agents also have goals and constrictions.

• Goals: To pick up more objects (foraging task), or rescue more humanoids (rescue

task), or higher score (soccer task), or others.
• Constrictions: computational abilities, storage space, communication loads,
physical action limitations1 such as action range and energy consumed, and errors in
communication and action etc.

1 Physical action limitations are common in real robots but less common in robot simulations.

Fig. 1. An Agent Paradigm with Communication and Knowledge

• Agent Categories
With this agent paradigm, agents are classified by sensing, action, knowledge, and
communication. There are ten agent categories in total (table 1):

• S and A: Non-communicated reactive agent

• S, A, and KB: Non-communicated cognitive agent

• S and C: Communication agent

• S, C and KB: Intelligent communication agent

• C: Blind communication agent

• C and KB: Blind intelligent communication agent

• C and A: Blind controlled agent

• C, A and KB: Blind intelligent controlled agent

• S, C and A: Communicated reactive agent

• S, C, A and KB: Communicated cognitive agent

In the rescue domain, three rescue agents (FireBrigade, AmbulanceTeam, and
PoliceForce) could be a type of non-communicated reactive agent, non-communicated
cognitive agent, communicated reactive agent, or communicated cognitive agent. Three

Communication
Control

Action
Control

Knowledge Acquisition
and Usage

Sensing

Action

Knowledge Base

Messages
from other
agents

Messages to
other agents

Control Unit

learning

rescue centers (FireStation, AmbulanceCenter, and PoliceOffice) could be a type of blind
communication agent or blind intelligent communication agent.

Table 1. Agent Categories
 Sensing

(S)
Action
(A)

Communi
cation(C)

Knowledge
Base(KB)

Comments

Non-communicated
Reactive Agent • •

 standalone
agent

Non-communicated
Cognitive Agent • •

 •

Communication
Agent •

 •
 messages

as actions
Intelligent
Communication
Agent

•
 • •

Blind
Communication
Agent

 •
 message

center

Blind Intelligent
Communication
Agent

 • •

Blind Controlled
Agent

 • •
 controlled

by other
agents

Blind Intelligent
Controlled Agent

 • • •

Communicated
Reactive Agent • • •

Communicated
Cognitive Agent • • • •

Fully
functional
agent

• Formal Methods for Agent Design
An agent can be represented as a tuple <S, A, C, KB, Constraint> according to the above
agent paradigm, where S is sensing, A is acting, C is communication, and KB is a
knowledge base.

The general problem is described as: Designing agents to optimize the performance P in a
domain D.
Usually, S, A, and Constraint can be defined for this domain D. Then the performance P
becomes the function of C, KB: P=perf(C, KB). The general problem is reduced to find
appropriate C and KB in order to optimize P.

We propose a general formal approach for agent development:

1. Define S, A, and Constraint in the problem domain D. Determine agent types for
this domain. For example, in some simple domains, C and KB may be
unnecessary.

2. Set initial C and KB with constraints.
3. Get performance P by experiments. If P is good enough, current C and KB are

appropriate and STOP; Otherwise, goto step 4.
4. Adjust C and KB. There are two adjustment methods: manually with human

intelligence or autonomously by machine (computer) learning. Then go back step
3.

3. Communication Implementation
Currently, the simulation system restricts the number of message sent/received in each
cycle for one agent, 4 messages for rescue agents (fire brigades, ambulance teams, and
police forces) and 2*n for rescue center (fire station, ambulance center, and police office)
which n is the number of rescue agents of the same kind as center. The maximum length
for one message is 256 bytes.

To handle these limitations, we have several design principles:
1. Message is preferably human readable texts.
2. Only communicate important information, not all information, due to the length

limitation and simulate real situation.
3. Message should be categorized so that receiving agents pick up the relevant

messages and discard irrelevant ones.

The final communication scheme comes from several trial-and-error rounds.

• Message Format
The message format sent by rescue agents is “Time t Command id Degree n”.
The message format between rescue centers is “Time t Command Degree d1 id11 …
id1n……Degree dk idk1…idkm”.

Time stamp t shows the cycle when this message is sent, which will be an import
communication factor in our thought. Currently, we just simply use this time stamp to
discard obsolete messages. ID is the identifier of a building or a road.

Commands are designed with experiments:

• extinguish: report the burning buildings.
• putout: report the putout buildings.
• locate: report the buildings with injured humanoids.
• empty: report the building with all injured humanoids are rescued.
• clear: report the blocked roads.
• remove: report the roads with blockades are cleared.

The extinguish/putout pair is for fire brigade agents, locate/empty pair is for ambulance
team agents, and clear/remove is for police force agents. The former in each pair is to

transfer important knowledge so that rescue agents can make rational actions with this
knowledge. The latter in each pair is to get rid of obsolete knowledge so that rescue
agents don’t waste time.

Degree is arbitrarily from 1 to 5 with the higher number represents more urgent. For
example, normally, a burning building with degree 5 has priority to a burning building
with degree 1 in fire brigade agents’ viewpoints.

Complying with message number limitation, rescue centers packs similar short messages
from rescue agents to several long messages. For example, a fire center receives three
messages from fire brigades: “time 10 clear 128 degree 1”, “time 10 clear 2257 degree 5”,
“time 10 clear 678 degree 1” (road 128 and 678 with blockade degree 1, road 2257 with
blockade degree 5). The fire center packs these short messages into one long message:
“clear degree 5 2257 degree 1 128 678”. The final message from the fire center to the
police office is “time 12 clear degree 5 2257 degree 1 128 678”.

• Future improvements:
Time stamp should have more important role in future communication developments.
More command categories if necessary.

4. Knowledge Base Implementation
Rescue agents are the type of communicated cognitive agent and rescue centers are the
type of blind intelligent communication agent. Thus, there are two different knowledge
bases for these two agent types.

• Knowledge Base for Rescue Centers
The goal of rescue center is to effective transfer useful information with restrictions.
In software implementation, we design a “Java class MessageBase”. The structure is:
Type Identifier Comment
Boolean sent Check whether this message is sent
int receiveTime the receiving time stamp
int sendTime the sending time stamp
int degree 1 to 5, the higher, the serious
string comment reserved for future development

Knowledge base for fire station consists of four types of knowledge: buringBuildings,
putoutBuildings, blockadeRoads, and buriedBuildings.
Knowledge base for ambulance center consists of four types of knowledge:
buriedBuildings, emptyBuildings, buringBuildings, and blockadeRoads.

Knowledge base for police office consists of four types of knowledge: blockadeRoads,
clearRoads, buriedBuildings, and buringBuildings.

The knowledge type with a bold and italic item is special for one center, while the other
three types are common for all centers.

Every type has similar structure “Java class HashMap” in software implementation. For
example, knowledge “clearRoads” contains
road id1 message base 1 (class MessageBase)
road id2 message base 2 (class MessageBase)
… …
road idn message base n (class MessageBase)

In current implementation, a message can be added to the knowledge base but can’t be
removed. If a message is sent/obsolete, the sent flag of this message just be set to “Ture”.
The main purpose to keep all messages is for debugging.

In future, if the knowledge base is too huge to handle, remove or purge actions in
knowledge base are options.

• Knowledge Base for Rescue Agents
We use several “Java class HashSet” for rescue agent’s knowledge base such as
burningBuildings, buriedBuildings, blockadeRoads.

There is an evolutionary process in design these knowledge types. Initially, only one type
blockadeRoads is used for knowledge about blocked roads. Further, there is a need to
separate this knowledge into two types: urgentRoads and normalRoads. Finally, with
more classification, this knowledge is divided into six classes with degree information.

• degree 5: the most urgent blockade roads, need to be cleared immediately.
• …
• degree 1:the least urgent blockade roads, to be cleared only after there is no more

urgent blockade roads.
• degree 0: unblocked roads.

Subsequently, the communication format is modified to satisfy this change as shown
above “Time t Command id Degree n” and “Time t Command Degree d1 id-1 … id-
n……Degree dm id-x…id-z”. Initially, the communication format doesn’t include
“degree” segment.

However, due to limited time and human power, not all rescue agents use knowledge
base with “degree”. Our message processing is downward compatible to handle messages
with/without “degree” segments.

A rescue agent acquires knowledge by communication and learning. Because online
learning seems ineffective in current competition rule and setting, we don’t use online
learning methods such as reinforcement learning. There are debates over offline learning
due to the difference of simulation and real world. Also, limited time and human power
(one person) prevent us from some offline learning. Thus, in our current implementation,
learning is not used.

• Future improvements:

In future, all knowledge base will be unified with “degree” information. However,
downward compatible is still an important issue for software or hardware design.
More knowledge components can be added such as proper parameters, rules. Knowledge
design is the most versatile and crucial part, also the hardest among all agent design parts.

5. Action Control Implementation
With knowledge in an agent’s hand, the rescue agent should make rational actions as
much as possible to reach the goal. It becomes to design a good action control system.

Our action control systems are finite state machine (FSM) in the nature. In each state, the
control system receives sensing information and knowledge from the knowledge base and
makes an appropriate action.

• Fire Brigade Agent
We design four states: SEARCH, EXTINGUISH, REFILL, and GOTARGETS.
In “search” state, the agent tries to find fires or choose a target fire to extinguish if it has
fire knowledge in its knowledge base. A general policy to choose a fire target is the fire
degree. The higher a fire degree, the more priority it is chosen.

In “extinguish” state, the agent is extinguishing a target fire. The agent will continue to
extinguish the same fire until the fire is put out. Then if there are nearby fires, put out
those fires. Otherwise, search a new fire with new “search” state.

In “refill” state, the agent must go to a refuge (water center) to refill its water tank or is
refilling at the center. Only when its water lever exceeds the require quantity, a preset
parameter, this agent change to new states with sensing and knowledge.

In “gotargets” state, the agent already chooses fire targets and is moving to one of them,
normally the nearest one with its routing algorithm. The agent may change its targets if it
gets more urgent fire information.

• Ambulance Team Agent
We design four states: SEARCH, RESCUE, CARRY, and URGENT.
In “search” state, the agent tries to find buildings with buried humanoids or choose a
target building if it has buried knowledge in its knowledge base.

In “rescue” state, the agent is rescuing an injured person. The state can’t be changed until
the person is fully rescued (the buried degree is 0). Then, the agent state will change to
“carry” state. If there are multiple ambulance agents who are rescuing the same person,
only one ambulance team changes to “carry” state.

In “urgent” state, the agent is rescuing an injured rescue agent such as a fire brigade or a
police force. Because these rescue agents will further do more rescue work than civilians,
rescuing these agents has a priority.

In “carry” state, the agent is carrying an injured person and moving to a refugee. Once
they reach the refugee, the rescue agent will change to a new state.

• Police Force Agent
We design three states: SEARCH, CLEAR, and GOTARGETS.
In “search” state, the agent tries to find blocked roads or choose a target road to clear if it
has road knowledge in its knowledge base. A general policy to choose a road target is the
road blocked degree. The higher a road locked degree, the more priority it is chosen.

In “clear” state, the agent is clearing a blocked road. This state can’t be changed until the
road is cleared.

In “gotargets” state, the agent already chooses road targets and is moving to one of them,
normally the nearest one with its routing algorithm. The agent may change its targets if it
gets more urgent road information.

• Miscellaneous
Besides above special design for each agent type, there are several common action
control strategies. In traffic jam situation, an agent moves to a safe building nearby if it
can’t move in previous cycle. If an agent is in a burning building, it must moves out.

• Future Improvements:
Currently our strategy doesn’t do extensive calculations. In future, we may use other
teams’ encircle methods to effectively extinguish a fire cluster.

6. Summary
Phoenix team is fully developed by Zijian Ren at University of Iowa. It attended the 2004
RoboCup Rescue Simulation Competition hold at Lisbon, Portugal by remote entry with
YowAI2004 team’s help, and ranked 12th in the final.

The general agent paradigm along with the agent design method will be right direction
for the (rescue) agent development. Several improvements are stated above. Due to the
limited time and human power, these ideas are not implemented for potentially better
performance.

Debugging is a crucial, yet difficult issue for multi-process simulation. We use console
outputs and graphical Kuwata viewer for debugging. We hope there are more powerful
graphic debug tools for multi-process simulation, similar to computer games.

