
MinERS: Preliminary Report

Maitreyi Nanjananth, Abdul Rub Aamer Mohammed, Ankur Satyendrakumar
Sharma, Srivenkatesh Kumar Vaithianathan, Alexander J Erlandson, and

Maria Gini

University of Minnesota, Minneapolis, MN 55455
{nanjan,mohammed,ankur,svaith,erland,gini}@cs.umn.edu

Abstract. We describe the architecture and strategies used in MinERS
(Minnesota Emergency Response Squad) and present preliminary results.

1 Introduction

The RoboCup Rescue Agent Simulation competition provides a platform for
designing and testing disaster management and mitigation strategies where het-
erogeneous agents (Police, Fire Brigades, and Ambulances) co-ordinate with each
other to deal with a simulated disaster scenario [1–3]. The overall objective of
the competition is to save as many civilians as possible and minimize the damage
to the buildings that are on fire, while at the same time clearing the rubble on
the road for smooth routing.

We ran our experiments using the RoboCup Rescue release version 0.49plus,
which is the version that will be used for the competition in 2009. We used a
distributed setting where each type of agent ran on a different machine, while
the kernel and all the simulators ran on the same machine.

2 System Architecture

The overall functionining of both ambulance and police agents is modeled using
the Subsumption Architecture [4]. We now describe each type of agent.

2.1 Police Agents

Police agents are responsible for clearing rubbles present on the road. The pres-
ence of rubble drastically hampers the movement of ambulance agents and fire
brigade agents over the map. Therefore, even though police agents do not directly
participate in the process of rescuing civilians and dousing fire, they are inher-
ently responsible for smooth execution of these tasks. There is also an implicit
requirement that the rubble gets cleared off from the environment as quickly as
possible since any delay will only slow down the routing of the other agents.

During the start of the simulation process all the police agents get the GIS
information about the city. The GIS includes information about the roads in



2

the city, their connectivity, length and the number of lanes they have. Rubbles,
however, are randomly scattered over the city and the information made available
is only on vicinity, i.e. none of the agents have a holistic view of the complete
disaster situation. The cost required to clear rubble from a road segment is
directly proportional to the degree of its presence on the road. Rubble once
removed from the road can reappear as the simulation proceeds.

The task of clearing rubble can be distributed among police agents. Thus, any
policy governing the behavior of the agents needs to ensure that police agents
are optimally used, i.e. in the entire simulation life cycle they should be clearing
rubble for a significant percentage of time.

[5–7] have proposed broadly two kinds of approaches to solve the problem.
The first is to use a centralized approach, where the police center, also called
police office, decides which police agent should clear which road. In this approach
the police center gets information about rubble from police agents as well as
other agents and then, based on some utility maximization function, each police
agent is assigned a road to be cleared. Since the police center has a better
visibility about the disaster scenario, it can make much more informed decisions.
However, as the overall design is similar to a hub-and-spoke architecture, it
suffers from the limitation that if the hub goes down for some reason, the entire
architecture is rendered useless. The hub in this case is the police center that
could be unreachable due to communication breakdown caused by disaster or
the police center itself could suffer from a drastic damage due to disaster. Thus,
there is a requirement for an alternative mechanism to limit the loss.

The second approach is a decentralized strategy where the police center is
minimally or not at all used and each agent individually decides which roads to
clear. The obvious drawback of this strategy is that none of the agents has a
universal view of the disaster scenario, thus any decision made by an agent is
mostly based on locally available information. However, since RoboCup Rescue
simulates a disaster scenario where it is quite possible that there will be no
communication with the police center, it is our conjecture that a decentralized
strategy should outperform a centralized strategy. [6] claims that a decentralized
strategy slightly outperforms the centralized one. For these reason, our initial
implementation of the police agents follows a decentralized strategy.

Both [6] and [5] suggested partitioning the disaster space among agents.
In both cases the partitioning is pre-determined and is homogenous. Such an
arrangement can result in partitions that have a drastic difference in the number
of roads in each partition. [6] mentioned a more powerful strategy for partitioning
the space based on the degree of blockades on the roads. However, such an
approach requires a lot of real time survey of the disaster environment by all the
agents, which could be a costly task by itself.

We propose a more moderate strategy for partitioning the disaster space that
is based on the spatial nature of the map. We generate partitions as clusters
of roads based on the Euclidean/Manhattan distance between roads. We have
implemented clustering using the K-Means algorithm. One of key criteria for this
selection was its fast convergence to approximate clusters. As one of the input



3

parameter for K-Means is the number of cluster to be generated, the number of
partitions needs to be pre-decided. We select the number of clusters Nc to be
⌊Np/2⌋, where Np is the number of police agents.

This strategy guarantees that there is at least one agent per sector. We
have used CLUTO (CLUStering Toolkit), a software package developed at the
University of Minnesota, for clustering and analyzing the clusters.

Fig. 1. (Left)Kobe 4 Map with roads divided into 8 clusters. (Right)Foligno Map with
roads divided into 4 clusters. Roads are marked with different color and roads with
same color belong to the same cluster.

Before the actual simulation begins each police agent has to (1) generate
clusters of the roads and (2) generate the partition ID for itself. Each agent
separately computes the clusters that will be treated as partitions in the real
environment. In order to make sure that clusters generated by one agent do not
differ from the clusters generated by any other police agent, we make sure that
the structure of the input data to the clustering algorithm is the same as well
as the seeds used by the random number generator within the clustering algo-
rithm. Once the partition information is generated, the agent uses the following
algorithm to figure out the partition it belongs to.

Algorithm to Generate Partition ID:

1. Iterate over all the agents and allocate agent to a partition if the agent is at
a location in the partition and there is no other agent already allocated to
that partition.

2. Iterate over all the partitions that did not get any agent assigned to them
in the previous step and assign an un-assigned agent to each partition.

3. Use Round robin to assign the remaining un-assigned agents to the parti-
tions.



4

Since this algorithm is invoked before the actual simulation has begun, each
agent knows the exact location of the other agents and the algorithm will give
a consistent result.

At each time step, every police agent does the following:

1. The agent may or may not be present in the assigned partition. In any case
the agent tries to first move to the refuge in the partition. If there is no
refuge in the partition, the agent tries to move to a randomly selected road
in the partition.

2. Each agent then generates a “walk” over all the roads that are present in the
partition and stores in memory. The “walk” confirms that agent has visited
all the roads in the partition.

3. If there is a blockade at the location where agent is, the agent tries to clear
the block. The blockade cleared by the agent can also be a priority task
blockade.

4. If the agent has received a request to clear a blockade from another agent in
the same partition, then the agent considers this as a priority task.

5. If the agent has a priority task then the agent tries to move to the location
where the requesting agent has informed about the presence of the blockade.
Otherwise it tries to complete the “walk” on the partition.

6. If the agent has completed its walk on the current partition, the agent selects
a new partition.

Performance Evaluation of Police Agents The Robocup Rescue Agent
simulation competition in 2009 uses a new vector based scoring mechanism.
Unlike the previous scoring mechanism that took most of the decision based on
the health point of the humanoids and did not put any emphasis on the degree
of planning and co-ordination done by the agents, the current scoring considers
factors like moving average utilization of fire brigade agents and ambulance
agents, fire extinguished ratio, building area that has remained intact and other.
However, there is no explicit metric measuring the performance of the police
agent. We propose a mechanism for measuring the performance of the police
agent. In the disaster situation the performance of a police agent comprises of
the following parameters:

1. Cost of non-priority blockades removed from the road. This is a parameter
that a police agent would like to maximize.

2. Total distance travelled by the police agent. This is a parameter that an agent
would like to minimize. Even though in the RoboCup Rescue simulation
environment there is no cap on the fuel consumption by the police cars, in a
realistic sense there should be an upper bound to it, so a police agent should
prefer some degree of localization while selecting target roads to be cleared.

3. Cost of priority blockades removed from the road. This implicitly addresses
the requirement of co-ordination between different types of agents.

Let Cnpi be the cost of clearing non-priority blockades by police agent i, Cpi

be the cost of clearing priority blockades by police agent i, and Di be the total
distance travelled during the life cycle of the simulation by police agent i.



5

The performance of a police agent i will be given by:

ηi = (Cnpi + 1) ∗ (Cpi + 1)/(Di + 1)

The overall performance, Pt, of police agents will be a summation of the
performance values of all the police agents. So while comparing the overall per-
formance of police agents on two simulation runs that are based on the same
simulation environment i.e. same map and same initial conditions with respect
to disaster, the one with higher Pt will be treated as better.

Table 1. Comparison of scores of MinERS agents with Sample agents

Map MinERS SampleAgent

Kobe (8-Runs) 29.61 (± 7.96) 2.36 (± 0.06)

Foligno 36.68 1.59

VC 353.09 8.831

The table 1 shows a comparison between the performance of police agents
of Sample code and the police agents of MinERS for various maps. 8 Runs were
made on the map of Kobe, while one run each was made for the other mentioned
maps. The Pt of sample code is quite low as compared to the Pt of MinERS.
This is because police agents of sample code do not deal with priority tasks.

2.2 Ambulance Agents

In the simulation environment, ambulance agents are responsible for saving civil-
ians that are buried under a building after the disaster. At the start of simulation
none of the ambulance agents has any knowledge of civilians that may be trapped
or injured within buildings in the city. The first challenge for them is to locate
the civilians in the buildings. Once an agent finds a civilian, the agent needs to
first remove the rubble from the buried civilian. The cost of execution, i.e. time
taken to execute, of this task is directly proportional the level of buriedness of
the civilian. Once all the rubble is removed the civilian is loaded on the am-
bulance and then taken to refuge. Ambulance agents cannot remove blockades
from roads, so the route chosen from the disaster location to the refuge should
avoid blockades. Otherwise, the ambulance agent has to raise a priority task to
a police agent.

Unlike both police and fire personnel, who can identify an exact location when
its ID is provided, the ambulance agent does not have this ability - civilians are
usually completely unknown until they are found (either heard or seen). Thus
the ambulance teams need to search every building before they can be sure
of finding everyone (dead or alive). Since people alive may be hurt and losing
strength over time, ambulance agents need to locate and retrieve them as soon
as possible, followed by retrieving any dead bodies that may be found.



6

The default way to do this would be a random search. Unfortunately, this
is time consuming and can miss trapped people because of distance issues. The
simulation provides an additional handicap not seen in real life: when someone is
shouting for help, in real life we can usually pinpoint the general direction of the
person - in simulation we cannot. Thus, we seek to model graceful degradation
in the ambulance agents, allowing them to perform their tasks effectively even
in the face of deteriorating communications and infrastructure.

The ambulance strategy operates on three levels:

1. Greedy local level - Rescue the nearest civilian, and start a building-by-
building search for humans in the vicinity. Use A* search to find the nearest
human, with parameters tuned to optimize search and travel time (for ex-
ample, ensuring roadways that were previously known to be blocked are not
used when in a hurry)

2. Neighborhood approach - Tune the search to rely on data from other agents.
This usually means asking fire brigades and police agents to provide infor-
mation about civilians in their vicinity.

3. Central level - use the Ambulance coordination center to store and send out
information about nearby humanoids, and use it to determine where to go,
and what roads are clear.

Each ambulance maintains a probability distribution indicating the likelihood
of a building being occupied by a civilian in need of help. Information received
while exploring and from other agent messages is used to update this probability
distribution. The agents start with a uniform distribution over all the buildings,
using an arbitrary prior probability of occupation.

The rescuing of civilians requires coordination - an agent that has found
multiple civilians should be able to coordinate with other agents to determine
the order in which to address the needs of the civilians to minimize further injury
to them. The ambulance agents coordinate through a hierarchical structure: the
agents select two leaders, and follow the leaders’ direction in terms of which
civilians to rescue. Leaders may be switched out if the agents encounter problems.
If communication with a leader is no longer available (for example, if the leader
is dead) then the agents assign a new leader amongst themselves. An agent
following a leader will start working to save a nearby civilian if it becomes clear
that the leader can manage the remainder of its task independently.

The process of loading and moving civilians needs roads to be clear until
refuges can be reached. This requires a method of finding alternative routes to
destinations, since delay of even a small amount of time can result in the death of
a civilian who might have otherwise survived. This has been done by maintaining
paths and ensuring that a blocked route is not chosen until it is known that the
route is now cleared and navigable. In addition, other ambulance teams need to
be up-to-date on the status of the ambulance agent and whether the civilians
have been successfully rescued. The communication system is used to achieve
this coordination and is geared to minimize message loss and maximize the
information contained in each message sent.



7

The ambulance agents do not rely on the center as heavily as is done in
[8] and [9]. At the center level, the ambulances use a system of auctions to
distribute tasks. This works well at the top-level for coordination as it takes some
of the computational burdem off the center, moving it to agents that already
have to perform those computations to complete their tasks. We will use this in
parallel to using the probability distribution to model the city and the need for
ambulance agents in different regions.

2.3 Fire brigade Agents

During a high-intensity earthquake, there is a high chance of buildings being
razed to the ground. There is also a chance of fire erupting in the buildings
and spreading to nearby locations. In the robocup rescue simulation project,
the firesimulator is responsible for randomly selecting buildings which should be
ignited. Once a building catches fire, its neighboring buildings in the block have
a high chance of catching fire too. Fires cause damage to the buildings which
directly effects the score. Hence, the responsibility of the fire brigade agents is
to douse the fire, as quickly as possible so that it does not spread further.

When the simulation starts, the fire brigade agents do not have any idea
of where the fire is spreading. They depend upon combing the area to find the
location of fire. In addition, agents of other types i.e., ambulance and police
agents, can provide fire related information to the fire brigade agents. This in-
formation has to be processed so that appropriate number of fire brigade agents
are assigned to each cluster of buildings on fire.

1. We noticed that fire occurs in clusters of buildings and blocks spreading
from one building to its neighbor and one block to the one next to it. As
in [10], we use k-means to determine appropriate clusters. Currently, it is
the responsibility of the center agent to use k-means for clustering but this
process will not work in case of center failures. The center agent also draws
a convex hull around the cluster and distributes agents around the hull so
as to contain the spread of fire. We believe that having agents surround a
cluster is the best way to contain the spread of fire to nearby buildings.

2. The distribution of agents among the clusters and within the clusters is in
itself an interesting area of study. Within a cluster, we use the output of the
convex hull algorithm to distribute the available agents within the cluster. To
distribute agents among clusters, we use the average fieriness of the buildings
in a cluster to allocate the number of agents to attend to a cluster, as in [10].

3. Each firebrigade agent maintains two lists of buildings that it needs to attend
to. One is a list of buildings which the center wants the agent to work on. If
the center fails, this list would eventually be empty. The agent would switch
to its local list of buildings that are on fire. Currently, the local list is a
priority queue with buildings with highest fieriness attended to first. This
is a simple strategy that we are currently following to gracefully degrade in
case of center failures. We are still working on a strategy to elect a leader.



8

4. One issue which has still not been addressed in our implementation is that
fire starts at places where there has been no combing operation and spreads
rapidly to surrounding buildings. This problem is exacerbated as there is
no way for agents to reach the location as the blockades have not yet been
cleared.

Table 2. Comparison of scores of MinERS agents with Sample agents

Map MinERS SampleAgent

Kobe 67.273 57.819

Foligno 63.868 62.396

VC 38.999 35.969

2.4 Combined Experiments And Results

A comparison of results of MinERS agents vs. Sample agents is shown in Table
2. On the Kobe map, we also conducted 5 experiments each with both the sets
of agents. The average score of MinERS was 60.797 and the average score of
sample agent was 49.979. The results show our agents perform slightly better
than the sample agent and we expect to improve them further as we continue
developing them.

3 Related Work

The RoboCup Rescue simulation environment has been used not only for com-
petition but also as a test-bed for research purposes. The core research problem
presented by a simulated disaster environment is that of task allocation. In the
disaster environment there are many tasks, like saving the civilians, clearing the
rubble and dousing the fire, but there is a fairly small number of agents each
with limited resources and capabilities to perform the task. The problem gets
even more complicated because some of the constraints are temporal in nature,
like the health point of the humans and the spread of fire in buildings.

Multiple approaches have been used to tackle the problems, ranging from
machine learning (e.g, [9], to distributed constraint optimization (e.g, [11]), to
combinatorial auctions (e.g., [5]).

[9] use an Evolutionary Reinforcement Learning at the ambulance center in
order to decide how many ambulances should co-operate to save civilian buried
under the rubble of a building. Thus they have treated this as a machine learning
problem. [11] have treated this as a constraint optimization problem. They have
proposed LA-DCOP, as low communication distributed constraint optimization



9

algorithm. [5] have treated the problem of clearing blockages by police agents as
a combinatorial auction problem. They have used a single auction wherein other
agents inform the police office about various tasks and the police office tells this
to all the police agents. Police agents then submit bids on these rubble clearing
tasks. The best agent for each task is assigned the task. Only one police agent
is required to remove a blockade.

4 Conclusions and Future Work

We have described the high-level architecture and strategies we are using for
agents in MinERS and reported preliminary results. Since this is the first time
we enter the competition, we had to spend significant time coming up to speed.

References

1. Kitano, H., et al.: Robocup-rescue: Search and rescue for large scale disasters as a
domain for multi-agent research. In: Proc. of IEEE Conference SMC. (1999)

2. RoboCupRescue Technical Committee: Robocup-rescue simulator manual version
0 revision 4 (2000)

3. Takeshi, M.: How to develop a robocuprescue agent (2000)
4. Brooks, R.A.: How to build complete creatures rather than isolated cognitive

simulators. In: Architectures for Intelligence, Erlbaum (1991) 225–239
5. Bredenfeld, A., et al.: RoboCup 2005, LNAI 4020. Springer (2006)
6. Paquet, S., Bernier, N., Chaib-draa, B.: Comparison of different coordination

strategies for the robocuprescue simulation. In: Proc. Int’l Conf. on Industrial
& Engineering Applications of Artificial Intelligence & Expert Systems. Volume
LNAI 3029., Springer-Verlag (2004) 987–996

7. Nair, R., Ito, T., Tambe, M., Marsella, S.: Task allocation in the robocup res-
cue simulation domain: A short note. In: International Symposium on RoboCup
(RoboCup’01). (2001)

8. Paquet, S., Bernier, N., Chaib-draa, B. In: Damas Rescue Description Paper.
Springer-Verlag, Berlin, Heidelberg (2004)

9. Mart́ınez, I.C., Ojeda, D., Zamora, E.A. In: Ambulance Decision Support Us-
ing Evolutionary Reinforcement Learning in Robocup Rescue Simulation League.
Springer-Verlag, Berlin, Heidelberg (2007) 556–563

10. Mohammadi, Y.B., Tazari, A., Mehrandezh, M.: A new hybrid task sharing method
for cooperative multi agent systems. In: Canadian Conf. on Electrical and Com-
puter Engineering. (May 2005) 2045–2048

11. Scerri, P., Farinelli, A., Okamoto, S., Tambe, M.: Allocating tasks in extreme
teams. In: Proc. Int’l Conference on Autonomous Agents and Multi-Agent Systems,
New York, NY, USA, ACM (2005) 727–734


