
RoboCup Rescue 2014 – Rescue Simulation League

Team Description

S.O.S (Iran)

S.Mohammad Reza Modaresi, Yoosef Golshahi,

Fatemeh Pahlevan aghababa, Pegah Taheri, NavidHaeri, Salim Malakouti,

Angeh Aslanian, Aramik Markari, Morteza Rezayi1

1
 Robotics Research Center, Department of

Computer Engineering and Information Technology,

Amirkabir University of Technology,

No. 424, Hafez Ave.,

Tehran, Iran

modaresi@aut.ac.ir, {yoosef.golshahi, reyhaneh.pahlevan,

navid.it.haeri}@gmail.com, salimm@cs.pitt.edu,

{ angeh.a2, aramikm, m.rezayi69}@gmail.com

http://www.sosrcrs.com/

Abstract. S.O.S team has a very significant background during 12 years of Ro-

boCup rescue simulation agent. Our team has achieved more than 8 trophies

during these years. S.O.S has designed a powerful base during these years and

now we are focusing only on our strategies. Our multi-layer and state-base code

design helps us separate agents’ strategies. Our team has been able to efficiently

solve low-level decision-makings such as clearing roads, rescuing civilian or

etc. since 2010, however, improving them has never been off the charts. Our

strong base allows us to use, implement and test many high level strategies and

intelligent strategies. New strategies have been developed in continuation of

previous works. In this paper, we describe our major changes to the Fire Bri-

gade agents. Moreover, since we find it extremely vital, later we briefly explain

our low level strategies and code structure. However, we believe reading our

previous team descriptions will be of extreme importance toward understanding

details of our strategies.

1 Introduction

The S.O.S. basic agent and its abilities and skills have been described in previous

years TDPs (2010-2012), so this paper is to depict the new strategies added to our

plan for RoboCup 2014. Following will come the description of these improvements

in details.

We designed new Strategies for Fire brigade and ambulance team agents, which is

described in section 2. In continuation of previous strategies we developed new strat-

egies. Most of our new strategies are related to fire brigade agents and we tried to

simulate the real action of fire brigades in the real world. In section 3 we discuss our

advanced agent coordination and communication methods . Section 4 describes our

powerful base in details. In last section we describe our code working environment

and the changes we made to customize it.

2 Agents

Reaching to reality is one of the goals of Robocop. Fire brigades have important

role in Robocop rescue simulation. So the most effort was made in fire brigade. We

aslo developed new state-based ambulance team and add handling aftershock to po-

lice forces.

2.1 Fire brigades

We assume that the Fire Brigade’s problems and features are known to the readers

so we will discuss only the technical and important parts of the Fire Brigade’s imple-

mentation.

Due to limited think time (0.5 -2 sec), we should make our decisions based on

some basic features and information that can be collected easily.

We run many empty simulations (with idle agents) and collect many samples from

the behavior of the environment and its changes according to the agents’ activity. An-

alyzing these samples provides important information, which is the base of Fire Bri-

gade’s strategies.

For example, surrounding the buildings by the way roads is the information that

can be gained easily, but way roads don’t affect fire propagation directly. Gathering

many statistics about how buildings spread fire when they are near roads helped us to

recognize the best way to use the relation between roads and buildings to extinguish

Fire Zones effectively. (This is only a small part of useful information gathered, the

rest could be found in our code)

In this year, we have tried to represent a new model by using this information,

which is more similar to a real model of fire brigades than previous models.

2.1.1 Strategy

The fire brigade will have two strategy layers.

 Global view: choosing a target fire zone, and its cooperation with other agent

types.

 Local view: the strategy of extinguishing the chosen fire zone effectively and

the cooperation between homogeneous agents.

5 years ago, the fire brigade agents didn’t use center and messages at all, therefore,

we were working on full distributed strategy. As a result, other teams suffered from

no communication in the last 4 maps of the 2009 final, but we maintained the same

effective performance. There was a change in the agents’ vision in the next year’s

contest that made us update the strategy and use communications to update the world

models. This change also influenced fire brigade’s decision layer that changed the

strategy to centralized system to select fire zones. It should be noted that this strategy

performs weakly on no communication maps.

Last year our aim was to work with minimum amount of messages passed, so we

made some changes in global strategy to make agents work mostly distributed and use

messages only for optimizing the agents’ decisions. For this aim, we used clustering

algorithms with different role that will be explained later on this passage.

In the previous year, we focused on our local strategy and selected targets by dis-

tributed strategy. This year, we are working on some definition of algorithmic game

theory and Nash equilibrium to select the best target for extinguishing.

2.1.2 Clustering

Clustering the map is not new for RoboCupers. Each team uses different clustering

algorithms for different purposes. This year S.O.S fire group is introducing another

use of clustering.

In big cities we have several fire stations. When fire happens, the nearest station

takes the responsibility of extinguishing the fire. Sometimes the fire extends, which

makes other stations help the busy ones.

For simulating this feature, we use star clustering algorithm and divide the map to

six parts. Each part has its own agents. In fact, this strategy decreases the usage of

channels in synchronization and management. It also decreases the time wasted for

moving. Because the agents in one group are active, they are near each other and have

similar world models. Therefore, high channel space for communication with other

groups is not necessary.

2.1.3 Task Types

Associating different tasks to different agents is another feature that helps us move

toward reality. As you know in real life we have different types of fire cars as in pic-

ture below.

Figure 1 Fire brigades in real world (image from http://canstockphoto.com)

In our strategy we categorize fire brigades as three different groups: Searcher, Ex-

tinguisher and free brigades.

According to our clustering strategy, we have to send agents to their best region.

The first group of agents that are sent to regions are searchers, which have an im-

portant role in our strategy. In fact, they are the leader of the group that conducts sen-

sitive tasks like checking the extinguished fire zone to determine that if any on-fire

building has remained. The second group is Extinguishers that conduct their activities

according to searchers’ rule and the third group are free ones, which are considered

backup agents to help stations when several fires happen in one region.

2.1.4 Fire probability

In real world, each human can estimate the fire position approximately according

to the neighborhood temperature. We have tried to handle this feature in an algorith-

mic form. There are two ways that a building’s temperature increases, one of them is

the radiated energy from real neighbor and another one is the energy that air transfers

to the buildings. Based on the recent start of the fire, the temperature of the air is low.

Therefore, not only it is unable to increase the buildings’ temperature but also de-

creases it because of the temperature equilibrium. Thus, we know because of the

sensed temperature that one of the real neighbors is on fire.

In first step, we make a graph that buildings with non-zero temperature and neigh-

bors of them are considered as nodes and each edge has weight of zero. In second

step, by using fuzzy rules like below, we try to determine the cost of the edges. The

nodes that have edges with maximum cost are the most probable ones to be on-fire.

This feature was also used in robocup2013 which its results can be seen in Paris4

map on final day. The fire brigades of S.O.S estimated the real positions of fire and

extinguished them.

This year, we are working on training model for this feature to better estimate fire

positions by using these rules.

for each N1 in G, if hasTemp(N1) and there is N2 in NeighbourNode(N1) that
 updateTime(N2) >= updateTime(N1) then cost[N1][N2] = -Max_value

for each N1 in G, if hasTemp(N1) and there is no N2 in NeighbourNode(N1) that
updateTime(N2)>=updateTime(N1) then

cost[N1][N2]=getNeighbourValue(N1,N2)*max(1,distance(N1,N2)/W1)*W2

for each N1 in G, if not(hasTemp(N1)) and updateTime(N1)<W3 and for each N2 in
 NeighbourNode(N1)

cost[N1][N2]=getNeighbourValue(N1,N2)*max(1,distance(N1,N2) /W4)*W5

GUC-Paris4

MRL-Paris4

POS-Paris4 S.O.S-Paris4

2.2 Ambulance Teams

In full communication we have centralized decision and this decision is based on

each AT’s current task, the cost of rescuing each civilian by each AT and more other

factors. According to these factors, each human is marked by an appropriate priority,

and by these priorities these humans were chosen by best agent which has the mini-

mum total cost. Because of reachability and noise, the center’s decision is not trusta-

ble, so each agent first finds its own best target, and then decides between that and

center’s recommended target for itself. This state is called self-assigning state. In self-

assigning strategy, we give a priority to each target according to agent’s type or civil-

ian, current cycle and the need of more agents in map. Target’s burriedness, damage

and dead time also affects the final value of priority. After that, each target’s cost is

evaluated by its priority and lots of other factors. Assigning algorithm works in the

way to find the best AT to rescue the minimum cost target according to closer cluster

and goes on finding best ATs for the targets until the current AT is chosen for a tar-

get.

Low communication strategy is similar to self-task assigning state. The difference

is that we add Virtual civilian in our base code and the similar algorithm choose be-

tween humans and virtual civilians.

In No communication since ATs meet each other around the refuge the probability

of going to the same cluster increases. In order to prevent this, each AT gives the

higher priority to its cluster and chooses the lowest cost civilian.

Besides, in Full communication we add help and ferocious states. If the AT doesn’t

find a target and doesn’t have search task, it will find a target with some factors in

order to help others.

And the priority of helping each AT is calculated as seen bellow:

If there isn’t any AT to help, in ferocious state the AT chooses the target consider-

ing no other condition but minimum cost.

3 Agent coordination and communication

Depending on the strategy each agent decides in a specific situation, the decision

will specify whether to work centralized or distributed. However, center agents think

that their platoon agents are working centralized so they provide centralized infor-

mation needed by platoon agents. As the platoons have almost the same world model,

their decision about this matter will be coordinated sufficiently.

As described in previous TDPs, the possible scenarios may include:

1. One or two low-bandwidth, high reliability channels and several high-

bandwidth with low reliability channels.

2. A large number (10 - 20) of low-bandwidth channels.

3. One high-bandwidth, high reliability channel and a number of high-bandwidth,

low reliability channels.

4. Only one channel with moderate bandwidth.

5. Only one low-bandwidth channel.

6. No radio channels at all.

Thus different strategies should be used for too specific scenarios, such as scenari-

os with one low bandwidth channel, low reliability channels and no radio channels.

Many of these strategies were previously explained, thus, we only described the fol-

lowing section:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐹𝑜𝑟𝑇ℎ𝑎𝑡𝐴𝑇

𝑀𝑎𝑥𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝐹𝑜𝑟𝑇ℎ𝑎𝑡𝐴𝑇
 ∗ 𝐵𝐸𝑁𝐸𝐹𝐼𝑇_𝑊𝐸𝐼𝐺𝐻𝑇

+ 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦𝑜𝑓𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 ∗ 𝐼𝑀𝑃𝑂𝑅𝑇𝐴𝑁𝐶𝐸_𝑊𝐸𝐼𝐺𝐻𝑇

+ (1 −
𝑇𝑖𝑚𝑒𝐼𝑡𝐻𝑎𝑠

𝑀𝑎𝑥𝑡𝑖𝑚𝑒𝐼𝑡𝐻𝑎𝑠
) ∗ 𝐿𝐸𝐹𝑇𝑇𝐼𝑀𝐸_𝑊𝐸𝐼𝐺𝐻𝑇

+
#𝑂𝑓𝐶𝑖𝑣𝑖𝑙𝑖𝑎𝑛𝑠𝐼𝑛𝑀𝑦𝐶𝑙𝑢𝑠𝑡𝑒𝑟

𝑀𝑎𝑥𝐶𝑖𝑣𝑖𝑙𝑖𝑎𝑛𝑠𝐼𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟
 ∗ 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁_𝑊𝐸𝐼𝐺𝐻𝑇

3.1 Strategy for one low bandwidth channel

For low bandwidth channel, a new kind of message blocks are used and only one

message block is sent per package. This package’s size is only 16 bits. At first the fire

message will be sent, and then only civilians’ positions are reported. The message is

sent as soon as the agent considers it important regarding its priority.

3.2 Strategy for low reliability channels

We believe that, receiving important messages in the low reliability channels is

more efficient than getting too many messages with normal and important priority

messages and since the probability of having noise in the second packet it at most

𝑝𝑓 ∗ 𝑝𝑓, we decided to duplicate important messages. However, duplicating messages

results in wasting bandwidth. Therefore, the messages are sent normally and the im-

portant messages are only duplicated using the aforementioned method in previous

section.

4 Software Architecture

S.O.S agents are based on SOS 2009 that described in the paper we published 4

years ago. In 2010 we changed it duo to kernel changes and tried to integrate it into a

newer version. We tried to find base problems and solve them. Now we have devel-

oped a collection of very good tools like reachability, message system, sensible area,

fire sensible area and etc. These are the tools used for developing rescue agent strate-

gies. The agent strategies’ structure is defined as follow:

4.1 Agent design and code structure

We designed a multi-layered structure, because we believe it is easier to optimize
and debug such structure. We also could divide the decision-making process of the
agent to different –higher and lower- levels. Therefore as can be seen in the figure
we have designed four layers.

4.1.1 High level decisions

This level chooses which state should be taken care of at the moment. It checks the
state that the map currently has. It changes the priority of tasks considering the situ-
ation of the environment such as blackness and size of fire zones. This is the only
part that we have been trying to train. It will let agents be flexible in different maps
and scenarios.

4.1.2 States decision

For each situation we should have a plan. States are the activity of a situation that
we have planned. This makes high-level decisions to decide easily and makes it easi-
er to handle the situation without considering other situations.

4.1.3 Low level

In this level we use methods implemented in S.O.S basic agent and low level acts

such as clearing a blockade. We make the decision that, in order to clear a road, which

blockade should be cleared first and how should it be cleared.

5 Software Tools

We utilize eclipse as part of our IDE and Ubuntu as operating system because of its

high performance and finally we use SVN for code version control. And also we pro-

vide some other tools for debugging our strategies and base.

The most important tool is Agent World Model Viewer, which provides an easy

usage interface and adding layers are made so easy. Currently we have about 115 dif-

ferent layers that are responsible for different strategies. This is our tool for virtual

debugging. The next tool is Agent Logger which logs things that happen in the code.

This helps us find the problem when we are playing the logs. Other important tool

that we use is log viewer. We modify the log viewer to be able to rebuild agent’s

world model by parsing the communication and agent sense.

6 Acknowledgements

We have great thanks to our teacher Prof. Homaioonpour and Computer Engineering

and Information Technology Department of Amirkabir University for Robotics Inno-

vation Lab, which provide us a research environment and inspires our work.

Also, we specially appreciate Mobinnet Company for their efforts, sponsorship and

support.

7 References

1. A General Computational Recognition Primed Decision Model with Multi-Agent

Rescue Simulation Benchmark by Alireza Nowroozi; Mohammad Ebrahim Shiri, As-

sistant Professor; Angeh Aslanian; Caro Lucas, Full Professor

2. Golshahi, Y et.al: S.O.S. Team Description Paper Proceeding of Robocup 2013.

3. Modaresi, M et.al: S.O.S. Team Description Paper Proceeding of Robocup 2012.

4. Markari, A et.al: S.O.S. Team Description Paper Proceeding of Robocup 2010.

5. Hashemi, B et.al: S.O.S. Team Description Paper Proceeding of Robocup 2009.

6. Ghaffuri, M et.al: S.O.S. Team Description Paper Proceeding of Robocup 2008.

7. Azizpour, H. et.al: S.O.S. Team Description Paper Proceeding ofRobocup 2007.

8. Ansari, M. et.al: S.O.S. Team Description Paper Proceeding of Robocup2006.

9. Cormen, T., Leiserson, C., Rivest.: Introduction to Algorithms MIT Press, Cam

bridge(2000)

10. Horstmann, C: Object-Oriented Design and Patterns

11. R.C. DubesandA.K.Jain. Algorithms for Clustering Data. Prentice Hall, 1988.

12. Robotic Rescue Simulation league Rules.

