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Abstract. The contribution of the UvA Rescue Team is an attempt to
lay a theoretical foundation by describing the planning and coordination
problem formally as an POMDP problem, which will allow to apply
POMDP-solution methods in this application area. To be able to solve
the POMDP problem for large state spaces and long planning histories,
our team has chosen for an approximation of the Dec-POMDPs through
a series of Bayesian Games, each solving a single timestep, referred to as
a Forward-Sweep Policy Computation method.

1 Introduction

The UvA Rescue Team has a long history. The first participation in the Rescue
Simulation League was by Stef Post and Maurits Fassaert, who competed in the
2003 competition in Paduva [11]. In 2006 the first Virtual Robot competition
was held. Max Pfingsthorn and Bayu Slamet participated in this competition
and won the Best Mapping award [9]. The team from Amsterdam started a
cooperation with Oxford University in 2008, which continued for 4 years [17, 15,
16, 1]. In 2012 the team operated again under its original name; the UvA Rescue
Team [2], which resulted in the Infrastructure award.

During those years the team published several journal articles, book chapters
and theses. The team described their approach every year in a Team Descrip-
tion Paper and published their source code' with a public license. Finally, the
details and rational behind the code used in the Virtual Robot competition is
described in a Technical Report [14], which also contains a complete overview of
our publications (up to 2012).

2 Approach

The intention of our team is to formulate the coordination problem of the Agent
competition in such a way that solution methods of the MultiAgent decision
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process toolbox [12] can be used. In earlier contributions [10] it was demonstrated
that the coordination problem is too large for an optimal solution, yet in recent
years much progress is made in approximate solutions [8]. For instance, the online
Bayesian Game Approximation (Forward-Sweep Policy Computation) algorithm
[4] has been demonstrated to be effective for large multi-agent problems [6], and
has been reimplemented into the MADP Toolbox.

In a first attempt, the coordination problem of the Agent competition is
described as a DEC-POMDP, following the description in Oliehoek et al [8].
A second attempt is made to formulate the problem in a hierarchical manner,
inspired by Oliehoek et al [7].

2.1 General approach

State Description The state space for the task of fire fighting in RoboCup
Rescue is limited to dynamic factors in the RoboCup Rescue world. Static fac-
tors, i.e. factors that do not change throughout the simulation, will not have to
be explicitly incorporated in the state space, although they are implicitly present
via the transition model.

The earthquake that takes place at the beginning of the simulation has a
large effect on the state: buildings collapse and catch fire, these collapses can
cause roads to get blocked (in either direction) and civilians to get trapped in
debris. Starting from this initial state, fires will spread if left unattended. The
fire simulator is based on heat energy as primary concept. Fire propagation’s
main component is heat radiation, which is simulated by dividing the open (non-
building) area of the map in cells for which the air temperature is computed.
Other factors that determine the spread of fire are properties of buildings. The
dynamic factors are the heat of a building, whether it is burning, how much fuel
is left and how much water is put in by extinguish actions. Static properties
like the size and composition of a particular building (wood, steel or reinforced
concrete) and how close it is to surrounding buildings also influence the spreading
of fire. However, because these properties are static, they do not need to be
incorporated in the state description. Instead the probability of a particular
building ¢ catching fire given that a neighboring building j is on fire is modeled
through the transition model. Training sessions with RoboCup Rescue simulator
will be used to estimate the probabilities used in the POMDP transition function
Pr.

As described in Section 2.2 the state space is divided in a macro level and a
micro level. At the macro level the state space is continuous, at the micro level
the state space can be made discrete. In particular, S = x;8; is the set of joint
states, where S; is the set of states available to each agent. The different type
of agents (fire-fighters, ambulances, police) have different set of states, but the
number of states relevant for the planning can be currently limited to six.

Actions The actions for an agent ¢ in RoboCup Rescue can be divided in
domain level actions A¢ and communication actions A$. A mobile agent can



perform both a domain level action as communication within one time-step (e.g.
a fire-brigade agent can move/extinguish and communicate). This means that
the set of actions A; for a mobile agent i is the Cartesian product of all domain
level and communication actions A; = A¢ x A$. In this section we will discuss
the domain level actions A‘ii. The subsection at the end of this page will deal
with communication actions AS.

All mobile agents can perform the move action. The argument of this mowve
action is a path along which the agent should move. Clearly the move actions
are dependent on the current position of the agent. Also, there is a maximum
distance that an agent can travel in one time-step (333m). This means that two
paths that deviate only after this point lead to the same action. Fire-brigades
have 2 specialized actions: extinguish and refill. The extinguish action specifies
a building and the amount of water (in liters) to direct to that building. The
refill action restores the water supply of the brigade and can only be performed
at ‘refuges’ or ’hydrants’.

Observations As with actions we specify the set of observations for agent i as
the Cartesian product of domain and communication observations O; = 0% x O.
Here we treat the domain observations O; = 0%, communication observations
Of are treated in the next subsection.

At each time-step, only objects within a range of 10m are seen, except for
fiercely burning buildings, which can be observed from a larger distance. When
an agent executed a move action, only observations of the new position are
received (i.e. no observations are made ‘en route’). On average 4-6 static objects
(building and roads) can be visually observed during a time-step [10].

Observing an object means that the agent receives the object 1D, its type
and properties. For a road this property is whether or not it is blocked (in both
ways), for a building, the so-called ‘fieriness’, is observed. This fieriness factor
is a direct function of the amount of fuel and water left in the building and
determines the part of the area counted as damaged.

Communication Communication is a transaction consisting of both an action
(by the sender) a® and an observation (for the receiver) o°. In RoboCup Rescue
there are two forms of communication, voice messages and radio messages, with
two corresponding specific actions, speak and tell respectively. Both types of
communication are broadcast: voice messages can be picked up by all agents
within a certain range from the emitter, while radio messages are received by all
agents subscribed to the emitter’s radio channel, regardless of the distance. The
restrictions that are posed on communication vary per competition. The number
of voice messages emitted per time step is limited, as well as the maximum length
of such a message. The restrictions of the radio messages concern the number
of channels available and the maximum bandwidth of each channel (i.e. the
maximum total capacity of the channel per time step). Furthermore, messages
of both types can be dropped out by the kernel, simulating faulty communication
systems.



In a Dec-POMDP, we can model communication by introducing communica-
tion actions and observations. The basic idea is that for each joint communication
action a one joint communication observation o¢ can be introduced that for each
agent contains the messages sent by the other agents. Restrictions with respect
to communication distance can be modeled by making communication depen-
dent on the (next) state s’. That is, it is possible to specify a communication
model of the form Pr(o¢|a‘, s).

The complete observation model is then given as the product of this commu-
nication model and the regular, domain observation model:

Pr(<0d> 0| <ada a‘), 5/) = Pr(o“[a’, 5/) ’ Pr(0d|ad7 S/)'

In a pure planning framework, messages have no a-priori semantics. Instead
the planning process should embed the ‘optimal meaning’ in each communication
action.

Transition, observation and reward model The transition model of a fac-
tored Dec-POMDP can be compactly described by a two-stage dynamic Bayesian
network (DBN). Because the state description is the same as used by the simu-
lator components, these structure and probabilities for this DBN can be found
by analyzing the code of the simulation system. For the (domain) observation
model we can make a similar argument.

The reward function is easily derived from the scoring function. A typical

scoring function is
Score(s) = (P + S/Soy) - v/ B/By, (1)

where P is the number of living agents, Sy is the total sum of health points
(HPs) at start of the simulation, S is the remaining sum of HPs, By is the total
area of houses, B is the area of houses that remained undamaged.

This gives us the reward function of the Dec-POMDP in the following way:

R(s,a,s’) = R(s,s") = Score(s") — Score(s).

The horizon is finite in the RoboCup Rescue competition (100-1000 time-
steps)?. However in the real-life setting we will typically want to plan for a
varying horizon (until all fire is extinguished and all trapped people are either
rescued or dead). This can be accomplished by treating the problem as one of
infinite horizon.

2.2 Hierarchical approach

As mentioned in subsection 2.1, the state description depends on a large number
of factors. Unless an efficient encoding of these elements is devised, the state
space becomes prohibitively large, as shown in [8]. One way to address this issue
is to consider an hierarchical approach, such as the one described in [7], under
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which the general problem is subdivided into multiple, simpler problems, orga-
nized hierarchically. For each of these problems, the state space and associated
action space are greatly reduced, thus allowing efficient reasoning.

For our hierarchical approach we will consider only two levels of abstraction,
with a less conventional method for the macro level and a Dec-POMDP model
for the micro-level. The goal of reasoning at the macro level is to efficiently
distribute the agents along the map in order to address the existent threats (i.e.
rescue victims, extinguish fires and clear roads). Consequently, the role of the
agents at the micro level is to effectively address the threats in the area assigned
at the macro level.

Macro level To illustrate the macro-level approach, let us first consider just the
problem of rescuing buried and/or injured civilians. Each discovered civilian can
be viewed as a sample drawn from a hidden ”threat” distribution over the 2D
space of the map. The ambulance agents can then be considered to ”generate” a
"help” distribution around their position (for example a Gaussian, albeit better
choices may be possible). Thus, the goal at a macro level would be to fit the
“help” distributions such that they approximate as well as possible the ”threat”
distribution, which can be done using Expectation Maximization or a similar
algorithm.

For this approach to yield satisfactory results, additional constraints must
be taken into consideration, such as restricting the values of the covariances of
"help” distributions, such that they reflect reasonably small areas which can be
dealt with efficiently by an agent at the micro-level. Also, in order to be able to
deal with the undiscovered victims, a total number of citizens can be assumed
(e.g. a function of the total number of buildings). Subtracting the observed ones
from this total number, gives an estimative number of unknown victims, which
can then be distributed uniformly over the unexplored space. As more victims
get observed, these randomly distributed points decrease in number and the
estimation of the ”threat” distribution becomes more accurate. After fitting, the
means of the "help” distributions would indicate towards which points of the
map should the ambulances focus.

However, in the case of the firefighting agents, this approach may be sub-
optimal, due to the dynamic behaviour of the fire spreading which requires a
closer agent collaboration. Thus, for the firefighting agents a different macro
level approach is considered, based on a Bayesian Game Approximation (BaGA)
algorithm [3]. Firstly, a central agent (either a fire station or a commonly agreed
"leader”) would aggregate fire reports made by all agents into clusters based on
their proximity. Secondly, it would create an auction for a number of the fire
brigades for each cluster, based on the total area of the buildings in the clus-
ter. The fire brigades would then bid according to their distance to the cluster,
the closest being assigned to attend the respective cluster. Finally, the BaGA
algorithm would be employed to determine the best assignments of agents to
burning buildings in the cluster. Similarly to other decision theoretic planning
algorithms, BaGA requires the definition of states, observations, actions, rewards



and transition and observation models. For the considered task, the states en-
code the fieriness of each building in the cluster, the observations indicate the
limited information about the cluster available to each agent, the actions indi-
cate which building is assigned to a particular agent, while the rewards take into
consideration domain-specific information, such as preferences for buildings on
the convex hull of the cluster, as well as the distance between each agent and
building in the cluster. The choice for the BaGA algorithm is motivated by the
fact that it takes into consideration the partial observability character of the
agent’s perception, and also because it is flexible enough to allow variation in
the number of agents and burning buildings in the cluster, from one timestep
to the next. Alternatively, the agent-building assignment task can be solved us-
ing Distributed constraint optimization (DCOP) techniques, as suggested in the
Multi-Agent Challenge [5].

Micro level In order to enable an efficient behavior of the agents at a tactical
level, regardless of the actual position on the map where they get assigned by
the macro level reasoning, a new state space must be devised. This state space
must be general enough so as not to depend on the particularities of the map, yet
informative enough to enable meaningful reasoning. However, balancing between
these two characteristics, as well as choosing relevant ”sufficient statistics” to
include in the state description is not straight forward.

Taking into account the fact that each agent type has different specific goals
as well as specific actions, it seems reasonable to have specific state and action
definitions for each agent type.

In our Team Description Paper for the Iran Open [13], a micro-level model
for each of the agents is proposed.

Table 1. Micro-Level Models

Agent  Observations o? Actions a? Transmissions a° Remote observations o°

Ambulance 4 6 5 3
Fire 5 7 6 4
Police 2 2 5 2

Based on our experience (e.g. at the Iran Open), the micro-level model could
be adjusted with new actions, observations or communications. Yet, care has to
be taken on the size of the action and observation sets to be able to learn a
policy with a DEC-POMDP solver.

Since we have defined a new set of more general actions and observations,
the corresponding transition model needs to be learned, as it cannot be directly
inferred from the simulator, which could be plausible in the case of a more
straight-forward definition of the Dec-POMDP. Obviously, the proposed model
for the micro-level achieves the reduced number of actions and observations
by abstracting and ignoring certain observed details. These may be related to



particularities of the map, as well as specific situations arising from the random
nature of the events. However, these omitted details can have a significant effect
on the transition model and a sufficient learning time must be considered in order
to achieve a general enough transition model. This would require a number of
simulation runs within which a transition probability table would be constantly
updated with respect to the specific circumstances an agent finds itself in. Should
these details prove to have a too great of an influence on the transition model,
additional observations, actions and /or communications may be required in order
to ensure an efficient generalization of the problem.

Boundary Micro/Macro level One thing we like to experiment with is the
sensitivity of the planning for the boundary between the Micro and Macro level.
When the Micro level is defined by the maximum distance of perception, the
partial observability assumption no longer holds and problem reduces to a MDP.
In addition, the number of agents which should be included in the decision
process also is reduced. The coordination between teammates is handled in that
case on a Macro level; distributing the agents over the map.

3 Conclusion

The UvA Rescue Team looks forward to be active again in the Agent competition
of the Rescue Simulation. The UvA Rescue Team will attempt to make state-
of-the-art decision making algorithms applicable to this domain by finding the
appropriate boundary between planning on a micro and a macro level.
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