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Abstract. The UvA Rescue Team likes to concentrate their effort in-
side the Rescue Simulation League to a theoretical contribution, which
is accordance with the Multi-Agent Challenge. The UvA Rescue Team
has formulated the planning and coordination problem formally as a
POMDP problem, which will allow to apply POMDP-solution methods
in this application area. Inside the Multi-Agent Challenge the limits on
communication no longer applies, which allows us to model communica-
tion actions as instantaneous and not limited by distance or bandwidth.

1 Introduction

The UvA Rescue Team has a long history. Yet, this will be the first participation
inside the Multi-Agent Challenge. The UvA Rescue team has already experience
in the Agent competition [8, 12] and the Virtual Robot competition was held [7,
13].

During those years the team published several theses, conference papers and
journal articles. The latest article [1] gives a nice overview of the RoboCup
Rescue Leagues.

2 Context

The Multi-Agent Challenge decomposes the problem of coordinating a large
team of emergency responders into several subproblems, as described in [2].

The first subproblem is assigning fire-brigade agents to firefronts. This is a
real multi-agent problem, working together could have non-linear benefits. In
addition, too many agents can be counterproductive. The fire-agents for this
benchmark could choose between three actions [3], while our fire-agents inside
the Agent competition already have to consider seven actions [12].

This reduction in action space will allow to consider larger teams or to enlarge
the planning horizon. In [2] several coordination algorithms were tested for the



city Kobe with three ignition points, 12 fire-brigade agents and simulating 300
timesteps.

The second subproblem is to support the evacuation of 3000 civilians from
a city (Berlin or Paris) after an earthquake. Many roads are blocked by debris,
which could be cleared by police agents.

3 Approach

The intention of our team is to formulate the coordination problem of the Agent
competition in such a way that solution methods of the MultiAgent Decision
Process toolbox [9] can be used. The toolbox expects the coordination problem to
be described as Distributed Partial Observable Markov Decision Process (DEC-
POMDP), which means that the effect of the actions is stochastic and the state of
the world is only partial observable. The benchmark describes the coordination
as a Distributed Constraints Optimization Problem (DCOP), which means that
the effect of the actions is deterministic and only the parameters of actions have
to be optimized. Both problem descriptions assume that the reward function is
known. In contrast, Distributed Coordination of Exploration and Exploitation
(DCEE) agents can also reason about uncertain rewards (but not about the
uncertainty in the action outcomes) [11].

Under the general DCOP framework, each agent is assigned a variable, the
goal being to determine an optimal value for that variable that maximizes some
global utility measure. This utility is defined through an utility matrix specifying
values for different joint configurations of variable values. In particular for the
firefighting scenario, the utility matrix described in the RMASBench framework
is a bidimensional matrix Ua,t reflecting reflecting the utility of agent a attending
burning building (target) t. This measure is computed based on the fieriness of
the burning building and distance between the agent and the building. Thus, for
this particular problem, the goal for the DCOP solver is to compute the optimal
assignment of fire agents to burning buildings. At each time step the procedure
is repeated, the reformulation of the ”problem” taking into account the changes
in the environment.

In contrast to the DEC-POMDP methods used to address the firefighting
and victim rescuing (i.e. addressing competition goals directly), described in [12],
solving the DCOP problem has a different goal, namely the optimal assignment of
tasks at each time step, which only indirectly leads to an efficient firefighting and
victim rescuing. Moreover, reasoning about the DCOP problem happens once
every simulation step, and not throughout the entire simulation episode. Thus,
the model for this problem can be formulated as a tuple 〈S,A,P,R, Ω,O, T, p0〉
where:

– S represents the state space, each state denoting a joint assignment config-
uration;

– A represents the action space, each agent’s action altering its own assignment
choice;



– P(s, a, s′) represents the transition funtion, reflecting probability of arriving
in state s′ from state s, taking action a; Although obviously each agent
will deterministically change his assignment choice through his action a, it
cannot be certain regarding the other agent’s actions, whose results are still
encoded in the state s′;

– R(s) is a reward function computed based on the known utility matrix and
the assignment configuration described by the state s;

– Ω represents the set of observations, which reflect the knowledge of the agent
regarding the state it is currently in;

– O(s, a, o1...on, s
′) is a function reflecting the observation probabilities;

– T represents the time horizon of the problem;

– p0 represents the start state distribution.

The partial observability property of this problem arises from the fact that
in general an agent cannot be aware of all other agent’s action choices. However,
in a more particular case of perfect communication, agents would be able to
broadcast their own choices to all other agents and thus each of them would be
able to know for certain the state in which they are in. Even if this eliminates the
partial observability, the stochasticity of the actions still remains, as the agents
choose their actions simultaneously and are unable to exactly predict the state
in which they will transition to.

The time horizon of the problem reflects the estimated running time con-
straints of each simulation step and insures a sufficiently good solution will be
computed before the allocated time expires.

Having this formal definition of the problem, standard planning algorithms
available in the MADP toolbox can be applied.

4 The MultiAgent Decision Process Toolbox

The MADP toolbox1 contains several planning algorithms. The planning library
depends on the other contained libraries and offers functionality for the planning
algorithms. In particular the library contains:

– Dec-POMDP solution algorithm: BruteForceSearchPlanner, JESPExhaus-
tivePlanner, JESPDynamicProgrammingPlanner [4], DICEPSPlanner [5],
k-GMAA∗ and GMAA∗ [6].

– POMDP solution techniques: Perseus [10].

– Heuristic Q-functions: QMDP, QPOMDP, and QBG [6].

Part of the challenge will be determine which of those planning algorithms
are best suited to the Multi-Agent Challenge.

1 http://staff.science.uva.nl/ faolieho/index.php?fuseaction=software.madp



5 Conclusion

The Multi-Agent Challenge is strongly aligned with the theoretical approach
of the UvA Rescue Team, so the probability is high that our team will fully
concentrate on this challenge for the competition in João Pessoa, Brazil.
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