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Abstract. This paper describes the strategy of Y-Rescue team to the
RoboCup Rescue 2015 Agent & Multi-agent challenge competition. For
the agent competition, our approach relies on field agents capable of
individual decision making, relegating the center agents to an informa-
tional role. Our main contributions are the scheme for prediction of fire
evolution done by fire brigades, the behaviour-based strategy for police
forces and the simple recruiting mechanism in tasks that demand more
than one agent. For the multi-agent competition, we choose to imple-
ment eXtreme Ants, a scalable, swarm intelligence based algorithm for
task allocation in dynamic environments.

1 Introduction

Rescue operations in disaster situations, such as earthquakes, tsunamis, ava-
lanches, for example, are a serious social issue. These operations involve dif-
ferent agents (police forces, firefighters, paramedics, among others) in a hostile
environment: buildings collapse, civilians get wounded, streets get blocked, wa-
ter and power supplies get compromised and communication is limited, making
information about the problem scarce and imprecise.

Such situations demand systems that can create robust, dynamic and in-
telligent search and rescue plans to aid human effort. Within this context, the
goal in RoboCup Rescue Agent & Multi-agent challenge competition is to foster
research and development in the field of coordination in multiagent systems. In
2015, the challenge is to program teams of fire brigades, paramedic and police
forces in the Agent RoboCup Rescue platform [2] and a decentralized constraint
optimization problem (DCOP) algorithm in RMASBench [3].

This paper describes the strategies that will be used to guide Y-Rescue team
in Robocup Rescue Agent & Multi-agent challenge competition. It is divided
in two main parts. In the first part (Section 2), we describe our main goals in
the Agent competition, which are: to develop a model to predict how the fire
evolves in burning buildings, to define a behaviour-based strategy for the police
force agents and to use a simple method for recruiting in tasks that demand
more than one agent. In the second part (Section 3), we describe our approach
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to the multi-agent competition, which involves the implementation of eXtreme-
Ants [4], a scalable algorithm based on swarm intelligence for task allocation in
dynamic environments.

2 Agent challenge competition

2.1 Ambulance Team

This team is responsible by the most important task in a disaster environment,
namely the search and rescue of injured civilians. Seeking for this goal, the
ambulance team will be aided by the other agents with respect to the discovery
of new victims.

The team of paramedics will be divided into sectors, defined by the number of
available agents and map size. These regions will have a category of importance
measured by the quantity of civilians not rescued yet, ordering the contingent
of agents to be designated to most important areas. Separating the agents into
regions of interest will make them cover all the map and save, in thesis, the
majority of civilians.

Task Allocation The task prioritization of this team will be governed by the life
estimation of the alive civilians. This estimation takes four factors into account:
agent-civilian distance; civilian’s life; civilian’s damage and whether or not the
civilian is buried in a burning building.

2.2 Police Force

This team has two main goals: to clear obstructed paths and to scout unvisited
areas of the map. The first goal can be divided into three jobs with different
priorities, in order: i) clear obstructed paths of important buildings, ii) clear
paths that are obstructing other agents, iii) clear random obstructed paths. The
second goal is to continuously search the map for survivors and fire spots.

To achieve these goals, police force agents use a behaviour-based controller.
Each agent chooses a behaviour based on its position and the location of impor-
tant features on the map. The behaviours are:

– Sweeper: the “sweeper” behaviour will try to clear important paths. These
paths includes the vicinity of important map features;

– By-demand: the “by-demand” behaviour will clear their own vicinity and
will constantly listen to the communication channels for “help messages”;

– Scout: the “scout” behaviour will keep searching inside buildings for sur-
vivors.
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Task Allocation Initially, the map will be divided into n clusters, where n is
the number of police force team agents. These clusters will be created taking
into account the size of the map and the localization of each agent. Agents
who are near an important feature of the map will be given the “sweeper”
behaviour, while agents who are on other areas will be given the “by-demand”
behaviour. When an agent finishes its tasks, it will then be assigned to the
“scout” behaviour.

The “sweeper” agent task is simple and direct: it will clear its cluster’s paths
until all paths are clear. It will not listen to any communication channel or stop
its task for any reason. The “by-demand” agent task is more complicated, as it
will be listening to a communication channel and responding to calls for help.
An agent from any other team will be able to broadcast a distress message to
the police force team informing that it is trapped and need assistance. This
message contains the sender’s current task and location. When a “by-demand”
agent receives a help message and it is the closest to the sender agent, this
“by-demand” agent will drop its current task and will respond to that message.

Both behaviours, “sweeper” and “by-demand”, will keep listening to calls for
help from civilians and will keep searching for fire spots, in order to report these
events to the proper agent team. Once they finish their tasks, they will be as-
signed to the “scout” behaviour. Agents with this behaviour will wander through
the map helping other police force team agents and searching for survivors and
fire spots.

2.3 Fire brigade

Similarly to the ambulance team and police force, fire brigade agents will be
divided in sectors of the map. A score will be assigned to each sector, depending
on its importance. For the fire brigades, the importance of a sector depends
on the number of burning buildings and the disaster potential of the sector.
The disaster potential is related to buried civilians, gas stations and building
density of a sector. Building density takes into account the total area (ground
area × number of floors) of all buildings in a sector. We want to prevent fire
from spreading to buildings with buried civilians, to gas stations and to areas
with high building density.

Firefighters will assign a score to each burning building depending on the
“effort” needed to extinguish the fire on the building. The effort is related to the
amount of water and time required to control the fire on a building. To calculate
the effort, we need a model of how fire evolves in a building along time. This
model will be given by a regression over the attributes of the building that the
fire brigade agent can observe: fieryness, temperature, material and total area.

Data for the regression is extracted from the simulator logs. After several
runs on different maps, a significant amount of data from different buildings can
be obtained and used as input for the regression.

Task Allocation Firefighters assign a score to each building. The score takes
into account the importance of the building (the ones with buried civilians
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and/or located near gas stations are more important), the agent-to-building dis-
tance and effort needed to extinguish the fire. Effort estimation takes as input
the prediction of how fire evolves (obtained from the regression model previously
discussed) and returns a measure of water and time needed to control the fire.
The importance of the building increases its score whereas the distance and the
effort decreases its score (a fire brigade agent will prefer to extinguish fires on
close, important buildings that do not require too much effort). Figure 1 shows
how a firefighter calculates the score of a building.

Fig. 1. Building score calculation procedure performed by fire brigade agents.

After deciding which fire to fight, the firefighter calculates whether it is able
to extinguish the fire alone. If not, the agent requests help from teammates,
using the recruitment method discussed in Section 2.5.

2.4 Center agents

In our strategy, center agents listen to radio communication between agents,
accumulating knowledge contained in the messages and replicating important
messages to avoid loss of information due to communication unreliability. Using
the accumulated knowledge from listening to multiple communication channels,
center agents are able to build a more accurate world view. Eventually, center
agents send messages to agents in specific channels to give them information
previously sent in other channels. This is done in order to make knowledge
among agents more uniform.

Center agents do not assign tasks to field agents. Their role is merely infor-
mational. The decision of engaging in a task is made individually by each field
agent. Therefore, our field agents are autonomous decision-makers. The advan-
tage of this approach is that our strategy does not depend heavily on the center
agents. Although their knowledge bases will lack some information provided by
the center agents, the decision-making process of our field agents will not change,
thus they should not be heavily affected by the absence of center agents.

2.5 Communication

Message construction The goal of communication is to increase the knowledge
base of agents and to improve coordination among them. However, in a disaster
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scenario, communication can be unreliable and bandwidth is limited. To address
these problems, our communication strategy is based on a simple protocol. We
define three message types for each kind of problem (blockades, burning buildings
and buried civilians) the agents may encounter:

– Report : the agent found a problem and reports it along with relevant infor-
mation to its teammates.

– Engaging : the agent decided to engage in a problem. Engaging messages also
contain information about the problem so that other agents can update their
knowledge bases even if the problem was reported earlier.

– Solved : the agent solved the problem and no further action about it is re-
quired.

In order to save radio bandwidth and maximize the amount of data shared
between agents, our communication will use a data compression algorithm. Each
agent is responsible for compressing/decompressing the communication data.

Recruiting protocol When an agent estimates that it needs help to perform
a task, it starts a recruitment process consisting of the following three steps:
first, a request message is sent by the recruiter agent to other agents. Agents
who receive the request message and are available to help send back a committed
message. Receiving committed messages allows the recruiter agent to select the
teammates that will help best in the task. The recruiter sends engage messages to
selected teammates and release to non-selected ones. Note that engage messages
used in the recruitment protocol are different from engaging messages used in
general communication (previously described). This recruitment process is a
simplification of the recruitment protocol of eXtreme-Ants algorithm (Section
3). Figure 2 in Section 3 illustrates the recruitment process.

2.6 Path planning

Path planning is divided in static and dynamic path planning. Static path plan-
ning occurs at the pre-processing stage, where we calculate the shortest path
between all pairs of map nodes. This is done by repeated application of Dijk-
stra’s algorithm. Static path planning generates a table with origin-destination
pairs and the route between them. During simulation, agents perform a lookup
on this table and save processing time to know the shortest path between two
map nodes.

Dynamic path planning occurs when a blockade is detected in a road. When
this happens, A* algorithm is executed to calculate the new shortest path be-
tween the agent’s origin and destination ignoring the blocked road. The new
route is updated in the agent’s origin-destinations table and a message is sent
to other agents to warn them about the blockade. Upon receipt of this kind of
message, agents mark the routes containing the blocked road as invalid on their
origin-destination table. When the blockade is cleared by police forces, a new
message is sent so that the agents can trust their origin-destination table on the
entries containing the cleared road again.
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3 Multi-agent competition

In the multi-agent competition, the goal is to develop a DCOP algorithm in
RMASBench. We choose to implement eXtreme-Ants [4]. This algorithm fol-
lows the extended generalized assignment problem (E-GAP) model of [5] and
extends Swarm-GAP [1], a swarm intelligence-inspired task allocation algorithm
for dynamic scenarios by explicitly employing a recruiting mechanism.

3.1 Extended Generalized Assignment Problem (E-GAP)

In E-GAP, a set of agents must be assigned to a set of tasks along discrete
timesteps. Each agent has a given capability to perform each task. Capability
can be regarded as the skill of the agent to perform the task. Each task consumes
resources from the agent who performs it.

An agent may perform multiple tasks but a task cannot be performed by
more than one agent. Thus, a task that would require multiple agents to execute
it must be broken down into smaller, inter-related tasks.

The partial reward given by the allocation of a task by an agent depends on
the agent capability to perform the task and whether the task is inter-related
with others.

In E-GAP, the total reward is calculated as the sum of the partial rewards of
the agents along discrete timesteps. A delay cost is applied as a penalty for not
allocating a task in a given timestep. The constraints are that the agents must
allocate tasks within their resource limits and that a task can be performed by
at most one agent.

3.2 Description of eXtreme-Ants

Inspired by the division of labor in social insects, eXtreme-Ants is an approxi-
mate algorithm for the E-GAP.

Observations about swarm behaviors are the base of the model presented in
[6], where tasks have associated stimulus and individuals have response thresh-
olds for each task. Let sj ∈ [0, 1] be the stimulus associated with task j and
θij ∈ [0, 1] be the response threshold of individual (agent) i to task j. The ten-
dency, or probability, of individual i to engage in task j is denoted by Tij ∈ [0, 1].
The response threshold θij of individual i to task j depends on i’s capability to
perform j (kij ∈ [0, 1]). The calculation of θij and Tij is shown in Eq. 1.

Tij =
s2j

s2j + θ2ij
and θij = 1− kij (1)

Regarding independent, i.e., tasks that are not inter-related, in eXtreme-
Ants, agents individually decide which task they will engage in a simple and
efficient way (via Eq. 1), minimizing computational effort and communication
between agents. Agents communicate using a token mechanism. When a given
agent perceives new tasks, it creates a token with these tasks. The agent can
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receive tokens from other agents too. Either way, the holder of a token has the
right to decide in which tasks of the token it will engage. The token with the
remaining tasks is passed to a random agent that has not held the token before.

To deal with inter-related tasks, i.e. groups of tasks that demand simultane-
ous execution, eXtreme-Ants uses a process inspired in the recruitment process
for cooperative transport observed among ants. When an agent perceives a set
of inter-related tasks, it acts as a scout ant. Firstly it attempts to allocate all
the constrained tasks. If it fails, then it begins a recruitment process via com-
munication. There are five kinds of messages used in the recruitment protocol
of eXtreme-Ants: request, committed, engage, release and timeout. Figure 2 illus-
trates the recruitment process, except the timeout mechanism.

(a) (b) (c)

Fig. 2. Recruitment process: (a) recruiter (circled with dashed line) sends request mes-
sages; (b) agents who decide to help respond with committed messages; (c) recruiter
sends engage to selected teammates and dismisses non-selected ones with release mes-
sages.

In addition to the steps presented in Fig. 2, in eXtreme-Ants, a request mes-
sage is forwarded when the agent who received it decides to not commit to the
task. Besides, there is a mechanism to prevent excessive forwarding of request
messages: when a request message is forwarded too many times, it expires. The
agent that received an expired request message sends a timeout message to the
scout (recruiter) agent. The scout, upon receipt of timeout messages, sends re-
lease messages to dismiss agents that had previously committed to the task.

This TDP presents a brief description of eXtreme-Ants. For further details,
the reader can refer to [4].

4 Conclusion

To address the challenge posed by the agent competition, we present an approach
that relies on autonomous decision-making agents. This means that no field or
center agent can directly assign a task to other agent.

Our approach relies on map sectorization in order to limit the scope of action
of each field agent. The task allocation of field agents is based on the score that
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they assign to each task, which is associated with the importance and difficulty
level of solving the task.

For the multi-agent competition, we choose to implement eXtreme-Ants in
RMASBench. The algorithm compares favorably to other E-GAP based ap-
proaches in terms of team reward, computational effort and exchanged messages.
This implementation represents a scientific contribution as we can establish the
first comparison of E-GAP and factor graph based approaches (e.g. max-sum
already implemented in RMASBench) for task allocation in dynamic environ-
ments.
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