
Contraction hierarchy algorithm that considers
fault incidences under disaster environment

NAITO-Rescue 2016 (Japan)

Kazuo Takayanagi1, Shunki Takami1, Yoki Miyamoto1, Masahiro Yamamoto1,
Yoshiyuki Kozuka1, Nobuhiro Ito1, Kazunori Iwata2

rescue-2016@maslab.aitech.ac.jp

1 Department of Information Science, Aichi Institute of Technology, Aichi, Japan
2 Department of Business Administration, Aichi University, Aichi, Japan

Abstract. Various disaster recovery problems are presented as part of
the RoboCupRescue Simulation (RCRS) project. We focus on the route
search problem among these. To solve this problem, we propose a con-
traction hierarchy algorithm that considers faults. We describe agent
implementations using our proposed method.

Keywords: Path Planning, Contraction Hierarchy, Disaster Environment

1 Introduction
The RoboCupRescue Simulation (RCRS) project aims to develop efficient agents
that perform various disaster relief tasks. To perform efficient disaster relief, a
key research problem that must be solved within the RCRS project is the shortest
path search problem. In the RCRS project, agents move to targets to perform
specific relief efforts. Hence, agents must find the shortest path to the targets
in order to perform their activities smoothly and efficiently. Agents must be
able to search and find such paths within short calculation times. This paper
proposes a new method for solving the route search problem and describes the
agent design using the proposed method. The rest of the paper is organized
as follows. In Chapter 2, to resolve path search within the RCRS, we describe
an adaptation of the contraction hierarchy algorithm. In Chapter 3, we describe
agent implementations. Finally, in Chapter 4, we provide conclusions and avenues
for future work.

2 Main Issues for NAITO-Rescue
In this chapter, to resolve path search within the RCRS, we describe an adap-
tation of the contraction hierarchy algorithm. We first provide an outline of this
algorithm, including key definitions and the algorithm’s importance. Next, we
explain our proposed method, and then, report on our experiments and evalua-
tion.

2.1 Contraction Hierarchy Algorithm

The contraction hierarchy algorithm, developed by Geisberger et al. in 2008, is
divided into two stages : a precomputation stage and the shortest path calcu-
lation stage[1]. The precomputation stage prepares a hierarchy that stores the

nodes. The order of these nodes is determined by their relative importance. In
this paper, we use edge difference as the method for computing importance.
More specifically, we calculate the importance of each node given in the first
graph, which we hereinafter call the input graph. The lowest node of impor-
tance is stored in the hierarchy. In this case, the hierarchy and the node directly
corresponded to one another. When all nodes are in the hierarchy, the precom-
putation stage terminates. The shortest path search stage calculates the shortest
path based on the precomputation. From these results, we obtain an actual path
based on the graph calculated in the precomputation stage. Using this approach,
the contraction hierarchy algorithm performs the shortest path search.
2.2 Key Definitions
The key definitions are shown in Table.1 and 2.

Table 1. Definitions of symbols

Key Explanation

G The weighted graph
V The set of nodes
E The edge connecting two nodes
C A cost function
B A fault incidence function

Table 2. Definitions of terms

Name Definition

Graph We denote a road network as a weighted graph G,
which is defined as G = (V,E,C)

Path A path from v1 to vk is denoted as a sequence of nodes
P = (v1, v2, . . . , vk) ∈ V × V × · · · × V with
vi adjacent and connected to vi+1 by ei,i+1 ∈ E for 1 ≤ i < k

Cost The cost of path (v1, v2, ..., vk) is as follows:
of Path c1,2 + c2,3 + c3,4 + ...+ c(k−1),k(2 ≤ k ≤ n)

The shortest path from vs to vg is path P = (v1, v2, . . . , vn)
Shortest (with v1 = vs and vn = vg) that, over all possible n,

Path minimizes
∑n−1

i=1 ci,i+1; the cost of the shortest path is
called a minimum cost for the path

Shortcut New edges ex,y that represent the shortest path (vx, ..., vy)
Agents An agent moves similarly to a vehicle

from a start node to a destination node using a map.
Fault Fault information denotes information about blocked roads
Information that an agent cannot pass through.
Detour The next-best shortest path when
Path there is a fault on the shortest path.

2.3 Importance
As mentioned earlier, measuring importance uses the edge difference. The value
of the edge difference of node v is the difference between the number of edges

connected to node v and the number of shortcuts belonging to the same level as
the node. In Fig. 1, we show an illustrative example of edge difference. In the
figure, solid lines show edges, while dotted lines show shortcuts that are at the
same level as the given node. Further, the numbers on each edge or shortcut
represents cost.

Fig. 1. Illustrating the edge difference Fig. 2. Shortcut and detour paths

2.4 Contraction Hierarchy Algorithm that Considers Fault
Incidences

We introduced fault incidence into the contraction hierarchy algorithm; thus, in
this section, we explain our extended contraction hierarchy algorithm. Specif-
ically, there are two paths ((vx, va, vy), (vx, vb, vy)), which together become a
shortcut, as shown in Fig. 2. In node v(m,n) of Fig. 2 , m represents cost and n
represents a fault incidence. Further, if three or more paths exist, we randomly
choose two paths; the other path becomes the preparatory path.

In the RCRS, when a failure occurs along the shortest path, we must then
consider a detour path. Here, we choose a path in which the predicted distance
considers the detour path as the shortest. We calculate cost cx,yof the shortcut
that connects vx and vy.

We obtain the predicted moving distance considering a fault incidence to
determine cx,y. Moreover, it is necessary to compare the cost of the resulting
path. In Fig. 2, when path α and path β are set to (vx, va, vy) and (vx, vb, vy),
respectively costs defined as cα and cβ . Also, fault incidences of edges ex,a and
ea,y are denoted bx,a and ba,y. Therefore, when fault incidence bα occurs on path
α, bα is defined as shown below. Similarly, we define fault incidence bβ for path
β.

bα = 1− (1− bx,a)(1− ba,y)

The shortcut is composed of two or more edges; however, we want to perform
a calculation while maintaining the shortcut, which is a feature of the contrac-
tion hierarchy algorithm, wherever possible. Hence, we perform the calculation
without deploying the shortcut. Therefore, it is necessary to calculate the cost
and fault incidence of the edge from the cost and fault incidence saved as a short-
cut. In this case, costs and fault incidences of the two edges are approximately
calculated as an equivalence. Therefore, costs cx,a, ca,y and fault incidences bx,a,
ba,y of edges ex,a, ea,y of path α are defined below. Costs cx,b, cb,y and fault
incidences bx,b, bb,y of edges ex,b, eb,y of path β are calculated similarly.

cx,a = ca,y =
cα
2
, bx,a = ba,y = 1−

√
1− bα

By using the above, we propose the following equation to calculate the pre-
dicted moving distance sα(x, y), sβ(x, y) of path α, β in consideration of a fault
incidence from x to y.

sα(x,y)= 1
1−bα

{cα+(1−bα)cα+(1−
√
1−bα)cβ+

√
1−bα(1−

√
1−bα)(cβ+

cα
2)} (1)

Here, if the fault incidence is low, the value of 1 increases. Note that (1 −
bα)cα is the expected value for the case in which path α can pass. Further,
(1−

√
1− bα)cβ is the expected value for the case that traverses path β when a

fault occurs in edge ex,a. Finally,
√
1− bα(1−

√
1− bα)(cβ +

cα
2) is the expected

value for passing through path β and turning back when a fault occurs in edge
ea,y.

In the extended algorithm, the optimal path is selected as the smaller one
by comparing the predicted moving distance values calculated in (1). If three or
more paths exist, the optimal path selects the value of the smaller one. Next,
we randomly select a path from among the spare paths. Therefore, we compare
the optimum route and selected path values calculated by (1). This calculation
continues until the spare paths are gone.

2.5 Our Proposed Method

The process flow of our proposed method is as follows.

Precomputation

1. Calculate the importance of the given node, and then add it to the hierarchy.
2. Remove the lowest-valued importance node from the hierarchy.
3. Add the shortcut to the input graph.
4. If the shortcut that connects the pair of nodes of the added shortcut already

exists, leave the one for which the calculation results of (1) are smaller.
5. Repeat steps 1 through 4 until the number of nodes that belong to the

hierarchy becomes two.

Shortest Path Search

1. Generate a list of paths to the nodes connected to the starting point (here-
inafter the start side list).

2. Generate a list of paths to the node connected to the destination(hereinafter
the destination side list).

3. Calculate the cost of nodes connected by edges that contains a shortcut from
the start point in (1); search this path.

4. If the path that connects to the destination is found, output the path; how-
ever, if the path is the shortcut, expand it to the path, output the path, and
exit.

5. Add the path to the start side list. This path is the path to a node connected
by an edge that contains the shortcut to the selected node from the start
point side; however , this path does not contain the start point.

6. Repeat, as much as possible, steps 3 through 6, during which if the same
path containing a node of the search target in the start side list in step 3
exists, the path of that node is selected by using the smaller value calculated
by (1).

7. Calculate the cost of nodes connected by edges that contains a shortcut from
the destination in (1); search this path.

8. If the path that connects to the start point is found, output the path; how-
ever, if the path is the shortcut, expand it to the path, output the path, and
exit.

9. Add the path to the destination side list. This path is the path to a node that
is connected by an edge that contains a shortcut to the selected node from
the destination side; however, this path does not contain the start point.

10. If there is a node of the search target that leads to the last point of the path
of the start side list, the path that added the destination side list to the start
side list becomes a candidate for the optimum route.

11. Repeat, as much as possible, steps 7 through 10, during which if the same
path of a node of the search target of the start side list in step 7 exists, the
path of that node is selected based on the smaller value calculated by (1).

12. If two candidate paths exist for the optimal path, the optimal path is selected
based on the smaller value calculated by (1).

13. If it contains shortcuts in the optimal path, expand it to path.
14. Output the path and exit.

2.6 Evaluation Experiments

Experimental Methodology
We compared our proposed method to Dijkstra’s algorithm [2] and the original
contraction hierarchy algorithm from the following viewpoints:

– Moving distance
– The number of faults discovered
– The number of nodes the search process passes through (hereinafter the

number of hops).

The precomputation stage of our proposed method and that of the contrac-
tion hierarchy algorithm, as well as the map data and its fault incidence com-
posed via a graph, were all given in advance. Further, because in our simulation,
we assume our experiments are aimed at the environment after a disaster, we
consider it appropriate to perform the precomputations before the disaster. The
moving distance and the number of faults discovered versus, the number of hops
yield a ratio of results for Dijkstra’s algorithm for the case in which failure dose
not occur. Further, the number of faults discovered was the number of faults
encountered per 100m.

Maps for Experiments
We used 1/25,000-scale map data for all areas in Japan. These maps were re-
leased by the Geographical Survey Institute [3] and the data were expressed in
G-XML, which is a Japanese Industrial Standards format. We used the informa-
tion regarding roads, which consists of nodes for roads and road edges. Nodes
for roads depict intersections V in weighted graph G Road edges are roads E in
weighted graph G, each of which connects the interval between two road nodes.
Cost function C draws its length from each edge. Blocked road rate function
B was invented by the liquefaction hazard map of cities [4]. We used two areas
to perform our experiments, as summarized in Table 3, and performed 10,000
experiments for each area. In each experiment, the start and destination nodes
of an agent were randomly selected.

Table 3. Information regarding the two sample areas

Area No. Area |V | |E|
1 Atsuta ward 1,760 2,609
2 Minato ward 4,892 7,127

Table 4. Results of our experiments

The moving dis-
tance

The number of
faults discovered

The number of
hops

Avg. S.D. count Avg. S.D.

Area 1: Atsuta ward
Dijkstra’s 1.66080 4.85629 0.20313 1.5489 0.6884

Contraction hierarchy 1.50747 4.68011 0.21674 1.5501 0.6899
Our proposed method 1.36081 0.79169 0.03127 1.3369 0.7360

Area 2: Minato ward
Dijkstra’s 1.45009 1.03418 0.26991 1.5127 0.5092

Contraction hierarchy 1.39170 0.39416 0.27670 1.5131 0.5091
Our proposed method 1.26117 0.33277 0.02286 1.1587 0.3493

Results and Discussion
In our proposed method, we observed that the moving distance, the number
of encountered faults, and the number of hops decreased as compared to the
other existing methods in an environment where faults occurred. Calculation
results of the existing methods indicated that there are edges with high fault
incidences, because such methods do not consider fault incidence of edges. Our
proposed method calculates a path in consideration of avoiding edges with high
fault incidences, i.e., calculation results are difficult for existing edges with high
fault incidences. Therefore, we conclude that using our proposed method, it is
possible to calculate a more efficient path.

3 Agent Implementations
In this section, we describe the agent behavior used in the algorithm proposed
in Chapter 2.
3.1 Agent Design
Our team developed agent implementations using the Agent Development Frame-
work (ADF) [5]. We implemented our proposed methods for the algorithm mod-
ules using ADF. Detailed implementations were written for each agent section.

3.2 FireBrigade

FireBrigade agents play the role of extinguishing fire. The purpose here is to
minimize the spread of fire. In this section, we describe the decisions made
regarding the workspace and target selections for FireBrigade.

First, we describe our decisions regarding workspace. We allocate a workspace
to each FireBrigade to arrange agents with workloads and reduce the amount
of required calculations. To allocate a workspace to FireBrigade, we use the k-
means clustering algorithm. The process of the adopted k-means [6] algorithm
is as follows.

1. Randomly assign a cluster to each building xi.
2. Based on the assigned buildings, determine center V j of each cluster in the

calculation.
3. Obtain the distance between xi and V i, assigning xi to the nearest cluster.
4. Repeat steps 2 and 3 until there is no change in the center.

Next, we describe how target selection works. We define fire clusters as groups
of burned buildings. We evaluate the distance between the center of a fire cluster
and the center of the map, classifying fire clusters into two cases based the
distance.
Case 1: Near the center of the map

Here, the distance is short meaning that the fire cluster is close to the center
of the map. It is therefore very likely to spread to exteriors, thus extinguish-
ing from the most exterior in range is the approach taken here. If there are
more than one identified as the most exterior, the building with the highest
temperature is selected.

Case 2: Far from the center of the map
Here, the distance is long, meaning that the fire cluster is far from the center
of map. The damage caused by the spread of fire is comparatively minor.
Therefore, extinguishing the fire from the central building is the approach
taken.

3.3 PoliceForce

PoliceForce agents play the role of clearing blockades. The purpose here is to
enable other agents to be able to move to destinations via the shortest path. In
this section, we describe our decisions regarding workspaces and how to clear
blockades.

First, we describe our decisions regarding workspace. To allocate a workspace
to PoliceForce, we use the k-means algorithm, just as with the FireBrigade.
PoliceForce act as follows in the cluster.

1. Clear blockades from the allocated cluster to refuge.
2. Clear blockades in the cluster in the order of priority evaluated by our con-

traction hierarchy algorithm.
3. Clear remaining blockades in the cluster and gather new information.

Next, we describe how to clear blockades. PoliceForce agents clear a blockade
by using coordinates and vectors. To efficiently clear blockades, we think it is
effective to clear the center blockades of the road. In this case, PoliceForce agents
partition the road into triangles and calculate its center. In a triangle, the center
of a side that does not correspond with a road edge and the center of an edge
that is contiguous with a road or building as coordinates act to clear.

3.4 AmbulanceTeam

AmbulanceTeam agents play the role of rescuing civilians. The purpose here
is to find and rescue buried civilians to the extent possible and carry them to
refuge. In this section, we describe our decisions regarding workspaces and target
selections of AmbulanceTeam.

Fig. 3. The blockade removal path

First, we describe our decisions regarding workspaces. To allocate a workspace
to AmubulanceTeam, we use the k-means algorithm, just as with the other
agents. AmubulanceTeam agents rescue civilians and gather information in the
cluster.

Next, we describe target selection. AmubulanceTeam agents have civilian in-
formation sent from other agents and acquired by the agents themselves. Amubu-
lanceTeam agents select a civilian to rescue from this information. In the selec-
tion of a civilian, the agents judge whether they will be able to rescue the said
civilian given the distance between the AmubulanceTeam and the civilian as
well as the damage the civilian has experienced. If there are civilians with slight
damage, they are carried to a road temporarily while others are being rescued.
After rescuing all civilians, they are carried to refuge.

4 Conclusions
In this paper, we focus on the path planning problem and propose a new method
for solving this problem. Next, we describe new strategies for agents. In the
future, we plan to implement our algorithm described in this TDP. If possible,
we also plan to compare our approach with other algorithms and implement our
algorithm more effectively.

Acknowledgement
This work was supported by JSPS KAKENHI Grant Numbers JP 16K00310 and
26330166.

References
1. Geisberger, R., Sanders, P., Schultes, D., & Delling, D. 2008．Contraction hier-

archies: Faster and simpler hierarchical routing in road networks. Experimental
Algorithms, 319-333．

2. Dijkstra, E.W. 1959. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik 1, 269-271.

3. Geospatial Information Authority of Japan. 2003. Gsi:1/25,000 map information of
japan. http://www.gsi. go.jp (in Japanese).

4. Nagoya City Hall. 2004. Earthquake map of nagoya city (in japanese).
http://www.city.nagoya.jp/kurashi/category/20-2-5-6-0-0-0-0-0-0.html

5. Kazuo Takayanagi, Shunki Takami, Nobuhiro Ito, Kazunori Iwata. RCRS-ADF.
https://github.com/RCRS-ADF/RCRS-ADF

6. MacQueen, J. B. 1967. Some Methods for classification and Analysis of Multivariate
Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability. University of California Press. 281-297

