Path-Planning Module
Using Contraction Hierarchy
NAITO-Rescue 2016 (Japan)

Kazuo Takayanagi!, Shunki Takami®, Yuki Miyamoto!, Masahiro Yamamoto!,
Yoshiyuki Kozuka', Nobuhiro Ito!, Kazunori Iwata?
rescue-2016@maslab.aitech.ac. jp

! Department of Information Science, Aichi Institute of Technology, Aichi, Japan
2 Department of Business Administration, Aichi University, Aichi, Japan

Abstract. The Agent Development Framework (ADF) [1] contains mod-
ules for solving key research problems. In this paper, we focus on the
route search problem, which is one of these research problem. We propose
a contraction hierarchy algorithm that considers faults, and implemented
a new PathPlanning modules. Further, we describe the implementation
of each module.

Keywords: Rescue Simulation, Path Planning, Contraction Hierarchy Algo-
rithm, Agent Development Framework

1 Introduction

The Agent Development Framework(ADF') contains research problems to be ad-
dressed in the RoboCupRescue Simulation (RCRS). The path finding problem
is one of them. In the path finding problem, agents are required to move to a
destination using the shortest path while avoiding blockades. Further, agents
should calculate this path within a short time. In this paper, we solve the path
finding problem using precomputation. The path finding algorithms that use
precomputation can be divided into highway-node routing algorithms and con-
traction hierarchy algorithms. The contraction hierarchy algorithm calculation
time is shorter than that of the highway-node routing algorithm for large net-
works. Therefore, we selected the contraction hierarchy algorithm because the
RCRS map has large network. We also describe the design of the modules that
implement our proposed method. In addition, we describe the design of the
TargetSelector modules that also implemented our some idea. Note that the
contraction hierarchy algorithm was used in the team description paper (TDP)
of the Agent Simulation Competition. The remainder of this paper is organized
as follows. In Section 2, we describe our adaptation of the contraction hierarchy
algorithm. In Section 3, we describe the TargetSelector module designs. Finally,
in Section 4, we provide our conclusions and directions for future work.

2 Adaptation of the Contraction Hierarchy Algorithm

In this section, to resolve path search within the RCRS, we describe an adap-
tation of the contraction hierarchy algorithm. We first briefly outline this algo-
rithm, including its key definitions and importance calculations. We explain our
proposed method, and then present our experimental results and evaluation.

2.1 Contraction Hierarchy Algorithm

The contraction hierarchy algorithm, developed by Geisberger et al. in 2008, is
divided into two stages: precomputation and shortest path calculation[2]. The
precomputation stage constructs a hierarchy that stores the path nodes. The
order of these nodes is determined by their relative importance. In this paper,
we use edge difference to compute importance. More specifically, we calculate
the importance of each node in the first graph, and the lowest importance node
is stored in the hierarchy. In this case, the hierarchy and the node directly
correspond to one another. When all nodes are stored in the hierarchy, the
precomputation stage terminates. The shortest path search stage calculates the
shortest path based on the graph calculated in the precomputation stage. This
is the approach that the contraction hierarchy algorithm uses to search for the
shortest path.

2.2 Key Definitions
The key definitions are shown in Tables.1 and 2.
Table 1. Symbol definitions

]Key\Explanation ‘

G |The weighted graph

V |The set of nodes

E |The edge connecting two nodes

C |A cost function

B |A fault incidence function

Table 2. Term definitions
’ Name ‘ Definition ‘
Graph We denote a road network as a weighted graph G,
which is defined as G = (V, E, C)

Path A path from vy to v is denoted as a sequence of nodes

P = (v1,vg,...,05) €V XV x - xV with

v; adjacent and connected to v;11 by €; ;41 € Efor 1 <i <k
Cost The cost of path (vy,vs,...,vx) is as follows:

of Path C1,2 + C2.3 + C3.4 + ...+ C(k—1)7k(2 S k S n)

The shortest path from v, to vy is path P = (vq,v2,...,vy)
Shortest (with v1 = vs and v, = v,) that, over all possible n,

Path minimizes Z?;ll ¢ii+1; the cost of the shortest path is

called a minimum cost for the path

Shortcut |New edges e, , that represent the shortest path (vy, ..., vy)

Agents An agent moves similarly to a vehicle
from a start node to a destination node using a map.
Fault Fault information denotes information about blocked roads

Information|that an agent cannot pass through.
Detour The next-best shortest path when
Path there is a fault on the shortest path.

2.3 Importance

As mentioned earlier, importance is measured using edge difference. The value
of the edge difference of node v is the difference between the number of edges
connected to node v and the number of shortcuts belonging to the same level as
the node. In Fig. 1, we show an example of the edge differences. In the figure,
solid lines indicate edges, while dotted lines show shortcuts that are at the same
level as the given node. Further, the numbers on each edge or shortcut represents
cost.

Edge difference=2-3=-1
Fig. 1. Edge differences

2.4 Considering Fault Incidences

We introduced fault incidence into the contraction hierarchy algorithm; thus, in
this section, we explain our extended contraction hierarchy algorithm. Specifi-
cally, there are two paths ((vg, va,vy) and (v, vp, vy)), which together become a
shortcut, as shown in Fig. 2. In node v(m,n) of Fig. 2 , m represents cost and
n represents fault incidence. Further, if three or more paths exist, we randomly
choose two paths and the third path becomes the preparatory path.

Improtance
Fig. 2. Shortcut and detour paths

In the RCRS, when a failure incident occurs along the shortest path, we
must then consider a detour path. Here, we choose a path in which the predicted
distance considers the detour path as the shortest. We calculate the cost c, 4 of
the shortcut that connects nodes v, and v, using fault incidence to determine
Cz,y- Moreover, it is necessary to compare the cost of the resulting path to other
paths. In Fig. 2, when path « and path 3 are set to (vy, v, vy) and (vy, vy, vy),

respectively, the costs are defined as ¢, and cg. In addition, fault incidences of
edges e;,q and e, , are denoted by b, , and b, ,, respectively. Therefore, if fault
incidence b, occurs on path «, b, is defined as shown below.

bo =1—(1—=bga)(1—Dqy)

We define fault incidence bg for path 3 similarly.

A shortcut is composed of two or more edges; however, we would like to cal-
culate the path while keeping the shortcut wherever possible. This is a feature of
the contraction hierarchy algorithm. Hence, we perform the calculation without
deploying the shortcut. Therefore, it is necessary to calculate the cost and fault
incidence of the edge from the shortcut cost and fault incidence. In this case,
costs and fault incidences of the two edges are approximately calculated as an
equivalence. Therefore, costs c; , and ¢, and fault incidences b, , and b, , of
edges e, and e, of path o are defined below.

Coa = Cay = gsba = bay = 1= V1= b
Costs and fault incidences of the edges of path 8 are calculated similarly.

Using the above equations, we propose the following equation to calculate
the predicted distance s (z,y) and sg(z,y) of paths « and f3, respectively, given
the fault incidence on the path from x to y.

So(2,9)= 15— {ca+(1=ba)ca+(1—vT=ba)cg+vT=ba (1—vT=ba) (cs+)} (1)

Here, if the fault incidence is low, the value of 1 increases. Note that (1—bg)cq
is the expected value of the case in which path « can be traversed. Further,
(1 — /1 —bq)cp is the expected value of the case in which the agent traverses
path when a fault occurs on edge e; . Finally, /1 — bo (1 —+/1 —ba)(cp +)
is the expected value of the agent traversing path S and turning back when a
fault occurs on edge e,y -

In the extended algorithm, the optimal path is selected as the smaller one
by comparing the predicted moving distance values calculated in (1). If three
or more paths exist, the lowest cost one is selected as the optimal path. Next,
we randomly select a path from among the spare paths. We compare it with
the optimum route and using the path costs calculated by (1). This calculation
continues until there are no more spare paths.

2.5 Proposed Method
The process flow of our proposed method is as follows.
Precomputation

1. Calculate the importance of the current node, and then add it to the hier-
archy.

2. Remove the lowest important node from the hierarchy.

Add the shortcut to the input graph.

4. If a shortcut that connects the nodes of the new shortcut already exists, use
the one with the lowest cost.

5. Repeat steps 1 through 4 until two nodes are left in the hierarchy.

@

Shortest Path Search

1. Generate a list of paths to the nodes connected to the start point (the start
side list).

2. Generate a list of paths to the nodes connected to the destination(the des-
tination side list).

3. Calculate the cost of nodes connected by edges in a shortcut from the start
point and search this path.

4. If a path that connects to the destination is found, output this path; however,
if the path is the shortcut, expand it to the path, output the path, and exit.

5. Add the path to the start side list. This path is the path to a node connected
by an edge that contains the shortcut to the selected node from the start
point side; however , this path does not contain the start point.

6. Repeat, as much as possible, steps 3 through 6 as required. While performing
these steps, if the same path containing a node of the search target in the
start side list in step 3 exists, the path of that node that has lowest cost is
selected.

7. Calculate the cost of nodes connected by edges that contain a shortcut from
the destination and search this path.

8. If a path that connects to the start point is found, output the path; however,
if the path is the shortcut, expand it to the path, output the path, and exit.

9. Add the path to the destination side list. This path is the path to a node
that is connected by an edge that contains a shortcut to the selected node
from the destination side; however, it does not contain the start point.

10. If there is a node of the search target that leads to the last point of the path
of the start side list, the path that adds the destination side list to the start
side list becomes a candidate for the optimum route.

11. Repeat, as required, steps 7 through 10. While performing these steps, if the
same path of a node of the search target of the start side list in step 7 exists,
the path of that node with the lowest cost is selected.

12. If two candidate paths exist for the optimal path, the lowest cost path is
selected as the optimal path.

13. If the optimal path contains shortcuts, expand it to the path.

14. Output the path and exit.

2.6 Experiments

Experimental Methodology

We compared our proposed method to Dijkstra’ s algorithm [3] and the original
contraction hierarchy algorithm using the following metrics:

— Moving distance
— Number of faults discovered
— Number of nodes the search process traverses (number of hops).

The precomputed data of our proposed method and the contraction hierarchy
algorithm as well as the map data and its fault incidences in graph from were
all given in advance. Further, in our simulation, we assume our experiments
take place in an environment after a disaster, hence we consider it appropriate

to perform the precomputations before the disaster. The moving distance and
number of faults discovered per number of hops yield the results for Dijkstra’s
algorithm when failures do not occur. Further, the number of faults discovered
was the number of faults encountered per 100m.

Experiment Maps

We used a 1:25,000 scale map data of all areas in Japan. These maps are
published by the Geographical Survey Institute [4] and the data are expressed

in G-XML, which is a Japanese Industrial Standards format. We used the road
information, which consists of nodes and edges. Road node V in weighted graph
G depicts an intersection. Road edges E in weighted graph G, are roads, each
of which connects two road nodes. The cost function C is the length of each
edge. Blocked road rate function B was created using city liquefaction hazard
maps [5]. We used two areas in our experiments, as summarized in Table 3. For
each are, 10,000 experiments were performed. In each experiment, the start and
destination nodes of an agent were randomly selected.

Table 3. Two sample areas

Area No.| Area [[V]] |E|

1 Atsuta ward |1,760(2,609
2 Minato ward|4,892(7,127

Table 4. Results of our experiments

The moving dis-|The number of|/The number of

tance faults discovered |hops
Avg. | S.D. count Avg. | S.D.
Area 1: Atsuta ward
Dijkstra’s 1.66080| 4.85629 0.20313 1.5489 0.6884

Contraction hierarchy|1.50747| 4.68011 0.21674 1.5501 0.6899
Our proposed method|1.36081| 0.79169 0.03127 1.3369 0.7360

Area 2: Minato ward

Dijkstra’s 1.45009| 1.03418 0.26991 1.5127 0.5092
Contraction hierarchy|1.39170| 0.39416 0.27670 1.5131 0.5091
Our proposed method|1.26117| 0.33277 0.02286 1.1587 0.3493

Results and Discussion

The moving distance, number of encountered faults, and number of hops of the
proposed method were less than those of the other existing methods in an envi-

ronments where faults occurred. The results of the existing methods contained
edges with high fault incidences because such methods do not consider the fault
incidence of edges. Our proposed method calculates a path while avoiding edges
with high fault incidences, i.e., its results do not contain many edges with high

fault incidences. Therefore, we conclude that using it is possible for our proposed
method to calculate a more efficient path.

3 Module Design

In this section, we describe the modules to improve the ADF, which are CHPath-
Planning, NAITOVictimSelector, NAITOBuildingSelector and NAITOBlockade-
Selector. We explain each module in detail.

3.1 CHPathPlanning

We create a CHPathPlanning module as a new PathPlanning module. CHPath-
Planning implements the proposed method described in Section 2. In the imple-
mentation, we define the area of the RCRS as a node. Further, the fault incidence
is determined using the area and building distribution around the area node.

3.2 NAITOBuildingSelector

We create the NAITOBuildingSelector module as a new TargetSelector module
of the FireBrigade (FB). The NAITOBuildingSelector performs the combined
clustering and allocation method to determine the responsible area of the agent.
Clustering is done using the k-means algorithm [6] and the Hungarian algorithm
[7] is used for allocation. The behavior of the NAITOBuildingSelector depends
on the presence or absence of fire.

— If there is no fire, the agent patrols the fixed responsible area and searches
for civilians and fire.

— If there is a fire, the agent uses available information to predict the location
of the center of the fire in the map and cluster area to extinguish it and keep
it from spreading.

3.3 NAITOBIlockadeSelector

We create the NAITOBIlockadeSelector module as a new TargetSelector module
of PoliceForce (PF). The NAITOBlockadeSelector is the module of the TargetSe-
lector that targets a Blockade. It performs clustering and allocation to determine
the responsible area of the agent using k-means for clustering and Hungarian al-
gorithm for allocation. The behavior of the NAITOBuildingSelector is divided
into two modes.

— Model : The agent clears the Blockade on a Civilian path. However, the
agent does not traverse the path once the Blockade has been removed.

— Mode2 : The PoliceForce processes tasks in the following order.
rescuerequests > tasksinhighimportanceareas > othertasks
As for the requests of other agents, the Agent prioritizes the agents that are
close.

3.4 NAITOVictimSelector

We create the NAITOVictimSelector module as a new TargetSelector module of
AmbulanceTeam (AT). NAITOVictimSelector is a module of TargetSelector that
targets Civilians and Agents. The NAITOVictimSelector performs clustering
and allocation to determine the responsible area of the agent using k-means
for clustering and the Hungarian algorithm for allocation. The Agent gives the
highest priority to the rescue of the AmbulanceTeam. The priority of the other
agents is calculated using the following inequalities.

Thedistancebetweenthenearest Agent * 2 < distanceo f Civilian

Thedistanceagent * 2 < distanceof FB — PF?AT : FB - PF

4 Conclusions

In this paper, we focused on the path planning problem and proposed a new
method for solving it. We also proposed four new modules. In the future, we
plan to implement the modules described in this TDP. If possible, we also plan
to compare our TargetSelector with other TargetSelectors to implement our Tar-
getSelector more effectively.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers JP 16K00310 and
26330166.

References

1. Kazuo Takayanagi, Shunki Takami, Nobuhiro Ito, Kazunori Iwata. 2015. RCRS-
ADF. https://github.com/RCRS-ADF/RCRS-ADF

2. Geisberger, R., Sanders, P., Schultes, D., & Delling, D. 20080 Contraction hier-
archies: Faster and simpler hierarchical routing in road networks. Experimental
Algorithms, 319-3330

3. Dijkstra, E.-W. 1959. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik 1, 269-271.

4. Geospatial Information Authority of Japan. 2003. Gsi:1/25,000 map information of
japan. http://www.gsi. go.jp (in Japanese).

5. Nagoya City Hall. 2004. Earthquake map of nagoya city (in japanese).
http://www.city.nagoya.jp/kurashi/category /20-2-5-6-0-0-0-0-0-0.html

6. MacQueen, J. B. 1967. Some Methods for classification and Analysis of Multivariate
Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability. University of California Press. 281-297

7. Harold W. Kuhn. 1955. The Hungarian Method for the assignment problem. Naval
Research Logistics Quarterly. 83-97. Kuhn’s original publication.

