
Database Driven RoboCup Rescue Server for

RoboCup 2010

Rahul Sarika, Harith Siddhartha, and Kamalakar Karlapalem

International Institute of Information Technology, Hyderabad,
Gachibowli, Hyderabad-500032, India

{rahul_sarika,harith}@research.iiit.ac.in

kamal@iiit.ac.in

http://mas.iiit.ac.in

Abstract. We build up on Database Driven RoboCup Rescue Server
(DDRRS) v1.0 to improve its speed, scalability, reliability and robustness
to give DDRRS v1.1. We also talk about the Score Vector, the evaluation
scheme to be used in this year’s competition. We then conclude with the
idea of an evolving Score Vector and a distributed DDRRS.

1 DDRRS v1.1

In the year 2008, we emphasised on the need to scale up the number of agents
and sizes of the maps used to make the simulations realistic. We also gave a
database centric solution to this problem, Distributed Database RoboCup Res-
cue Server (DDRRS) [5]. DDRRS version 1.0, which was demonstrated during
RoboCup 2008 held at Suzhou, successfully scales up to 500 rescue agents with
1500 civilians on standard maps like Kobe, Foligno et cetera.

One of the major drawbacks in the design of the original RoboCup Rescue
Simulation Server [1], RCRSS v49.*, is the redundancy and unusually large over-
head in messages passed between the kernel and other simulators. The kernel
sends the same updated information to every simulator regardless of its type. For
example, suppose a fire fighting agent submits a fire extinguish command. The
traffic simulator only simulates the motion of the agents. The traffic simulator
does not need the information of the fire fighter which has submitted an extin-
guish request. Similar redundancies can be observed during a kernel-simulator
conversation.

This problem was solved by DDRRS with the help of a database. A snapshot
of the database schema as given in Tables 2, 3, 4 was designed such that any
information required by a simulator was just one query away. At the beginning
of the simulation, all the simulators are given certain database privileges which
ensure that no simulator can go ’rogue’. In the case of the fire fighting agent
example which we took earlier, the traffic simulator has no permission to view
or update the information related to the AK EXTINGUISH request submitted
by the fire fighting agent. Each simulator requests the database for information
it really needs.

2 Rahul Sarika, Harith Siddhartha, and Kamalakar Karlapalem

During a few experiments, we observed that the time taken to update the ta-
bles was longer than estimated. It so happens that when a field in a certain row in
a table is updated, all the fields in that particular row are accessed. Table Movin-
gObjects (Table 2) which contains the information of all the agents, Buildings
(Table 3) which contains the information of all the buildings and Roads (Table
4) which contains the information of all the roads contain fourteen, eighteen and
eighteen columns respectively. In the table Roads, the fields actively accessed and
updated are roadID (ID of the road) and block (width of the road block). In case
of the the table Buildings, buildingID (ID of the building), temperature (temper-
ature of the building) and a couple of other attributes are accessed and updated
frequently. One can imagine how slow a simulator’s performance becomes during
an update of the state of mere hundred buildings. A small example here will help
us see the problem very clearly. The traffic simulator (1) processes an agent’s
AK MOVE command, (2) simulates the motion of the agent and (3) updates the
new position, position history and position extra of that agent. In order to do
this, the simulator extracts the current position (position) of the agent from the
table MovingObjects (Table 2) and after it simulates the AK MOVE command
submitted by that agent, the simulator updates the fields position (current po-
sition of the agent), positionHistory (path taken the by agent from the start of
the game till now) and positionExtra (offset in the position of the agent if it is
on a road) in the table MovingObjects.

To overcome this problem, we fragmented the database schema. Table Movin-
gObjects (Table 2) was fragmented into Agents (Table 5), Agents Position (Table
6), Agents State (Table 7), Agents Other Attributes (Table 8). Agent Position
(Table 6) now contains information related to only the motion of the agents which
is used by the traffic simulator. Similarily, the tables Buildings and Roads have
also been fragmented into Buildings (Table 11), Buildings Position (Table 12),
Buildings Other Attributes (Table 13) and Roads (Table 9), Roads Other Attributes
(Table 10 respectively.

This modification is the first of the two major features of DDRRS v1.1,
the next version of DDRRS v1.0. With this feature, the number of agents that
can be simulated can now go beyond thousand, thus bringing us a little closer
to our goal to simulate millions of civilians and thousands of agents in larger
cities. Fragmentation of the database in this manner also paves way towards the
implementation of a distributed version of DDRRS, DDRRS v2.0.

2 Score Vector

Score Vector [6], which we introduced in DDRRS v1.0 in the year 2008, has
been selected to be used as the official evaluation scheme for the 2009 RoboCup
Rescue Competition. It neatly captures numerous inter-related aspects such as
progress of civilian state of health, rescue operations, et cetera. for evaluating
a team. Without taking these inter-related aspects into consideration, as in the
current scoring method, the scoring is rendered poorly as it cannot capture the
true picture of the state of the teams’ performance. These aspects can help the

Database Driven RoboCup Rescue Server for RoboCup 2010 3

organizers of the competition set new challenges and shape the existing ones
into a rigid form. The participants can make use of the same to investigate and
rectify any defects present in their algorithms.

Road Blocks

Damage to

 the City
Civilian Health

Fire Buriedness Transport

FB AT

PF

Fig. 1. Score Dependancies

Figure 1 shows the dependencies among the factors that affect the score of
any RCRSC. Damage to the City and Civilian Health at the top are the
two most important factors as mentioned in the Section 2. However, Damage

to the City is caused by Fire which is taken care of by the fire brigade (FB).
There are two issues for FB, namely Road Blocks and limited capacity to
carry water. Road Blocks are cleared by the police force (PF) and lack of
coordination between FB and PF results in FB travelling longer distances than
required to extinguish fires and refill tanks. This results in a wastage of time
and fuel, and additional damage to city. A similar argument can be put forth
in the case of the ambulance team (AT). Civilian Health is affected by Fire,
Buriedness of Civilian and Transport of Civilian to Refuge. AT ’s job is
to rescue civilians from the debris and transport them to the refuge which can
get delayed due to the presence of Road Blocks.

With so many factors influencing the game, it is not correct to decide the
winner with just a scalar quantity. A vector defined by these factors gives clarity
to the approach of a team towards the game and also gives confidence to decide
the deserving winner. Preliminary factors we needed to consider for better eval-
uation of the teams so as to enhance the level of competition are given in Table
1.

4 Rahul Sarika, Harith Siddhartha, and Kamalakar Karlapalem

Table 1. Factors influencing the performance of a rescue team and the type of influence
on the score

No Factor Influence on the score Objective for teams

A Agents in the following categories:
1. Dead (0<=HP<=10) Negative Minimize

2. Critical (11<=HP<=40) Negative Minimize
3. Average (41<=HP<=70) Positive Maximize
4. Healthy (71<=HP<=100) Positive Maximize

B Time spent by a rescue agent travelling in the city Negative Minimize

C Average number of messages passed amongst rescue agents Negative Optimize

D Ratio of civilians in refuge Positive Maximize

E Ratio of civilians rescued Positive Maximize

F Percentage of building area destroyed Negative Minimize

G Ratio of fires extinguished Positive Maximize

H Average time taken to
1. Rescue a civilian Negative Minimize
2. Extinguish a fire Negative Minimize

3. Transport a civilian to a refuge Negative Minimize

Unlike a regular scalar quantity currently used, the Score Vector provides
multiple prespectives on behaviour and performance of agent teams. In fact,
contradictory and seemingly impossible tasks which require agent teams to make
tradeoffs will be measured by the Score Vector. It is truly a challenge for an agent
team to use a single strategy or approach to optimize the parameters of Score
Vector. The agent competition can be designed such that agent teams cannot
predict which parameters are important and need to be considered. Further, the
parameters themselves can be weighed to rank the teams based on the difficulty
levels of different performance aspects of the agent teams. With the Score Vector,
teams can identify which aspects of their strategy are good and which are not.
This gives them a better way to analyze and compare their performances with
others during a game as well as after the game.

3 Future Work and Conclusion

After RoboCup 2008, we worked on enhancing DDRRS v1.0 and Score Vector.
We have succeeded in speeding up DDRRS in the form of DDRRS v1.1 and
building a better evaluation scheme. We intend to give a solid demonstration at
Graz this year and convince the RoboCup Rescue community to use DDRRS
for RoboCup 2010.

Our future work is to build a distributed DDRRS which is essential for a
massive simulation scenario and an self evolving Score Vector which adjusts the
weights given to parameters by observing the performance of the agent teams
during the course of the game.

Database Driven RoboCup Rescue Server for RoboCup 2010 5

Table 2. MovingObjects

Field Type

objectID int

position int

positionExtra int

stamina int

hp int

damage int

buriedness int

direction int

water int

objectType int

contents int

moves text

positionHistory text

lastUpdatedTime int

Table 3. Buildings

Field Type

buildingID int

buildingType int

posX int

posY int

floors int

attributes int

ignitionFlag int

fieryness int

brokenness int

entrances int

apexes int

groundArea int

totalArea int

buildingCode int

importance int

temperature int

lastUpdatedTime int

objectsInRange text

6 Rahul Sarika, Harith Siddhartha, and Kamalakar Karlapalem

Table 4. Roads

Field Type

roadID int

head int

tail int

length int

roadKind int

carsToHead int

carsToTail int

humansToHead int

humansToTail int

width int

block int

repairCost int

medianStrip int

linesToHead int

linesToTail int

widthForWalkers int

lastUpdatedTime int

objectsInRange text

Table 5. Agents

Field Type

id INT

stamina INT

direction INT

agentType INT

lastUpdatedTime INT

Table 6. Agents Position

Field Type

id INT

position INT

positionExtra INT

positionHistory text

path text

lastUpdatedTime int

Table 7. Agents State

Field Type

id INT

hp INT

damage INT

buriedness INT

lastUpdatedTime INT

Database Driven RoboCup Rescue Server for RoboCup 2010 7

Table 8. Agents Other Attributes

Field Type

id INT

contents INT

water INT

lastUpdatedTime INT

Table 9. Roads

Field Type

id INT

roadKind INT

carsToHead INT

carsToTail INT

humansToHead INT

humansToTail INT

medianStrip INT

linesToHead INT

linesToTail INT

widthForWalkers INT

lastUpdatedTime INT

Table 10. Roads Other Attributes

Field Type

id INT

head INT

tail INT

length INT

width INT

block INT

repairCost INT

lastUpdatedTime INT

Table 11. Buildings

Field Type

id int

buildingType int

floors int

ignitionFlag int

entrances int

apexes int

groundArea int

totalArea int

buildingCode int

importance int

lastUpdatedTime int

8 Rahul Sarika, Harith Siddhartha, and Kamalakar Karlapalem

Table 12. Buildings Position

Field Type

id INT

posX INT

posY INT

attributes INT

lastUpdatedTime INT

Table 13. Buildings other Attributes

Field Type

id int

fieryness int

brokenness int

temperature int

lastUpdatedTime int

References

1. T. Takahashi, et al. : Agent Based Approach in Disaster Rescue Simulation - From
Test-Bed of Multiagent System to Practical Application, RoboCup (2001)

2. T. Takahashi : RoboCupRescue Simulation League, RoboCup (2002)
3. RoboCup Rescue Homepage: http://www.RoboCupcuprescue.org
4. RoboCup Rescue Wiki: http://www.robocuprescue.org/wiki/index.php?title=RSL2009
5. Rahul Sarika : Database Driven RoboCup Rescue Server, RoboCup (2008)
6. Harith Siddhartha : Retrospective Analysis of RoboCup Rescue Simulation Agent

Teams, AAMAS (2008)

