Robocup Austria 2009 —Rescue Simulation League
Virtual Robot Competition
ETB_VR

Majid Yasari, S. Ali Zahiri, Sepehr Farhand

ETB Robotic Association Labs, Computer Engineering Department
East Tehran Branch Islamic Azad University, Tehran, Iran
{majid.yasari, sa.zahiri, farhand.sepehr}@gmail.com

http://www.etbiau.ac.ir/robotics.htm

Abstract. This article is a quick overview of design decisions made by the ETB Vir-
tual Robot team for participating in Robocup 2009 Competition in Austria. We are
going to give a short description of our agent architecture and the design of our Robot
and techniques that are used in order to deal with several challenging problem in Vir-
tual Rescue Robot such as SLAM (Simultaneous Localization and Mapping), Auto-
nomous Exploration, Obstacle Avoidance and Victim Detection.

1 Introduction

Every year in all around the world, thousands of people die or get injured under
collapsed buildings or other unreachable areas because of explosion, earthquake,
flood and other natural or unnatural disasters. Delay in rescue operations due to these
dangerous situations, vast locations, massive casualties, etc. leads us to employ high
technologies to aid rescue group.

Designing, implementing and using rescue robots not only makes explorations
much more accurate by seeking for vital signs of victims, but also brings much more
safety to rescue teams.

Because of mentioned problems, shortage of equipments, cost overheads and also
to prevent doing several experiments repeatedly which takes a lot of time, nowadays
simulated environment are commonly used. Urban Search and Rescue Simulation
(USARSIm) is an environment which is used in robotics and artificial intelligence
methods.

Since 2002, RoboCup Rescue Competitions are held as a part of the annual Robo-
Cup World Championships. It is the purpose of RoboCup Rescue, to promote re-
search and development in this socially significant domain in order to ultimately ac-
quire solutions that can be used by USAR (Urban Search and Rescue) teams under
real emergency situations.

In this paper, we present a system of heterogeneous team of semi-autonomous
robots, which explores an unknown environment. The tasks are performed coopera-

http://www.etbiau.ac.ir/robotics.htm

tively to ensure maximum information extraction of the environment, in order to
assist first responders to plan rescue operations.

Our agent architecture is designed to use intelligent function up to fully autonom-
ous [1]. This includes works on autonomous multi-robot systems. For examples,
mapping a vast area with multiple robots [2] and research on exploration under con-
straint of wireless networking.

We use some principle algorithms such as SLAM Algorithm to localize and map
the environment, this algorithm is one of the main algorithms for localizing the agent
and mapping the environment simultaneously; in resumption, we use compound of
Bug algorithm and Vector Field Histogram (VFH) for preventing to strike any ob-
stacles and barriers which maybe are between our agent and target.

2 Localization, Autonomous Navigation and Mapping

Intelligent robot needs to use SLAM techniques to explore and rescue in real or
virtual environments. There are two approaches in SLAM:

1) Where am 1?
2) What is the scale and shape of my environment?

Answer to the first question solves localization and answer to the other one solves
Mapping. So SLAM is a technique that is employed by robots to design a map and
create a world model from the unknown environment. SLAM implementation in-
cludes several steps. The data which robot receives from its sensors are fully noisy
and it defects the performance considerably. So first of all we should make the data
smooth and eliminate noise from it. We proposed Kalman filter as a good solution for
it [3, 4 and 5]. On the other hand, decomposition of the map into several sub-maps is
another approach; this method called occupancy grid, finds landmarks in the main
map and then creates grids on it.

Xe=Xc-1 +MA . (1)

Ye=Ye-1 4+Y actuator (2)

In (1) and (2) the map has updated due to the linear motion;
e A;: store the current motion commands.
® Yactuator - denote the associated uncertainly.
e Z;: Current looking
e Ky : gather the estimate distance.

K =% C(CT, C'+ Ympasure) ©))

X, =X, +K'(Z —CX;) (4)
Y= (I-K C)X, (5)

In (3, 4,5) X, Y, isthe result that get from Kalman filter and X, Y1 is the input
data for Kalman filter.

Occupancy Grids have some benefits; the most important one is that grid-based re-
presentations of a robot’s physical environment can be used directly by most naviga-
tion, obstacle-avoidance and learning algorithms. Another key benefit of occupancy
grids is that the resolution can be tuned to represent the environment’s geometric
properties at any desired amount of details. In theory, this is bounded above only by
the level of details originally captured by the sensors. This property of occupancy
grids makes them the ideals metric representation for maps that should contain a high
amount of detail, a feature that is not used in most other map representations. [6,
7].To accomplish occupancy grids, there are sensors in the robot that use a simple
technique with ray-casting .This beam has been sent directly from the robot to ob-
stacle to determine distance between robot and obstacle.

For example, if an obstacle is detected at some relative distance, then rays can be
cast from the cell at the current position of the robot towards every cell that coincides
with the detected obstacle. For all the cells which intersect with the cast rays before
the rays hit on the obstacle, the miss counter is incremented. Likewise, for the cells
that intersect with the detected obstacle the hits counter is incremented [8]. After-
wards, the occupancy of every grid cell can be determined by threshold of the ratio of
the number of hits over the sum of hits and misses together (6).

Hits

Occupancy of each cell = ———
Hits+Miss

(6)

After occupancy grids, another approach for localization will be used, which is
based on Topologically Organized Map. In this step a special graph will be created
from the path of robot. In addition knowing that the obstacle is detected, a diagram
will be created from the map to divide it into the sub-maps. These sub-maps have no
overlap with each other and each one describes a safe area for robot to move in that
region [9].

The first advantage of using topologically map is its outstanding support for path
planning algorithms. Autonomous robots need to go from a place to another in order
to complete their designated tasks. Considering the task of exploration which all ro-
bots need to perform, it is conceivable that in some points the robot reaches a dead-
end. In this situation before it can continue to search another area, the robot has to get
out of that location first. Topological maps facilitate these kinds of tasks very well.
The nodes and links in graphs and diagrams tell any path planning algorithm precisely
how to go through the explored areas safely.

The second advantage is their compactness. They are capable of representing huge
environments in a very compact way. While the size of occupancy grids and feature-
based maps grow exponentially with the size of the environment or the number of

detected features, topological maps typically only grow linearly in size as nodes and
links are added to denote recently explored areas.

-
L

[] l.] s
Fig. 1. Applying four steps for localization and mapping [8]

So as Fig.1 shows, we can summarize the steps of mapping and localization;
e Applying Kalman filter on feature based map.
e Making a grid cells from the map.
e Implement topological map to determine obstacles and safe paths.
o Decompose the main map and start mapping from unknown environment
and design a new map.

So, each robot performs exploration, mapping and localization with the algorithm
described above and creates its own sub-map. Finally, all of the maps which are sepa-
rately designed merge with each other to achieve the main map (7).

Main Map = Merge (Sub-map;, Sub-map, ..., Sub-map,) @)

Using topological map we have required information for planning, there are some
methodologies proposed for planning regarding; A* algorithm [10] and other Al ap-
proaches, heuristics, classic algorithms based on graphs i.e. Shortest Path Algorithms
(e.g. Dijkstra, Floyd), Graph Traverse Algorithms (e.g. BFS, DFS, etc.) In our limited
time we found our heuristic algorithm much more efficient both in functionality and
amount of processes.

3 Exploration

In virtual competition all of teams try to explore with SLAM. It means that every
robot must search environment, localize and generate map at the same time. With this
action each team can optimize its performance. Exploration has two important steps:

1- Victim Detection
2- Obstacle Avoidance

Both of these steps could be done with sensors and actuators.

3.1 Victim Detection

The most important part of a rescue robot’s job is finding and recognizing the vic-
tim in robot’s observations in its exploration. We employed different types of sensors
for victim detection (i.e. Sound, Touch, Human motion and Victim-and-False-positive
Sensors).

Our algorithm is implemented considering this probability that using only victim-
and-false-position sensor or touch sensor may lead to false detection or causing laten-
cy in finding victims. Every victim may have motion or make sound, so it is possible
that human motions or sounds help us to find victims. One of the benefits of using
sound sensor in virtual environment is that, there is only one source of sounds which
is made by victims, so it can help each robot to detect victims with more accuracy.

Another perception of a victim is the pictures that the robot’s camera cap-
tures.These pictures denote the motions and natural colors of the environment. Our
program uses the data which comes from camera to recognize the color of the skin or
the shape of the victim’s face or body. Skin color is an important parameter in robot’s
vision to detect victims. Given skin and non-skin histograms, can increase the proba-
bility of finding victims in the area which is a part of robot training. The method we
use to detect the color of skin is based on the YCbCr color space.

3.2 Obstacle Avoidance

Obstacle Avoidance is one of the major problems in autonomous robot exploration
which in it, robot uses sensors’ data and then makes a good decision to choose the
best trajectory. Obstacle avoidance is used when our agent is located where we cannot
operate it manually with an operator. For example, when our robot is out of range of
communication station, agent must explore an unknown environment, and yet,
shouldn’t strike to any available obstacles. Here, it is good to mention that we cannot
call all the substances which robot senses, the obstacle. In our agent architecture defi-
nition; walls, blocks and big hedges are not obstacles because they are part of global
map and could be seen before reaching them. On the other hand, obstacle is a hedge
which can be sensed with robot sensors (in our agent architecture we use Sonar sen-
sors for obstacle avoidance) and makes robot changes its trajectory for reaching to its
goal or target. Obstacle avoidance focuses on changing the robot’s trajectory as in-
formed by its sensors during robot motion. The resulting robot motion is both a func-
tion of the robot’s current or recent sensor readings and its goal position and relative
location to the goal position.

In our agent architecture, obstacle avoidance is a low level module which uses the
sonar data to guide the robot away from obstacles. When the robot comes too near an
obstacle, it overrides the control commands sent by the navigation module, and drives
the robot away from obstacles.

We first used Bug Algorithm for avoiding any obstacles. Then we worked on Vec-
tor Field Histogram (VFH); therefore, we reached to this conclusion that it is better
that we apply a compound of that two methods and algorithms. Therefore, in our
compound algorithm we define a Cost function that uses from sonar data for selecting

the best trajectory. In this algorithm our robot select the best way for avoiding any
obstacles with maximum cost values for going towards its goal.

4 Communication

In virtual robots like other simulation environments there are two main parts; the
agent and the server. The agent represents one or more robots with sensors and actua-
tors which get sensed from and affect the virtual environment. Fig.2 describes the
way server and robots communicate with each other.

Iy
Vietim Identification
T"-- """ % Rabol
Pracess & Cparatar Robot Process & Mavigation
Meniter Control Unit F: c i Communication (2> Control Urit r/' Unit [RidLy
(Pcuy Unit (acu) Unit (RCU) (=0 oo
. ;
Operator Interface 7 R
Unit (OIL) Eiive Uil (LD
or gida g

Fig. 2. The architecture of server side (1) and client side (2) of connection

This decentralized setup allows us to spread the computations across many ma-
chines and still run a relatively large team of agents. Only one server instance is re-
quired, which will record the pre-processed mapping information from the agents.

Robots use wireless communication in order to share some information about the
region they are exploring. Although this communication is limited by distance, but
sometimes it helps robots to minimize overlapping in explored areas and improves
coordination in multi-agent fields.

5 Agent Architecture

Agent Architecture is the frame of all algorithms used in this article. So without
strong agent architecture, we cannot develop a stable system in which it could per-
form its tasks as good as possible.

The ETB rescue virtual robot team intends to field a team of robots to perform
coordinated mapping, exploration, and victim detection. However, each robot must
also be able to perform its tasks individually and does not rely on other robots. For
this purpose, we have designed a modular system with each module being as self
sufficient as possible. Also, each module can be changed internally without affecting
the other modules.

This solution helps us to insure the stability of the system and prevent any possible
crashes. All incoming and outgoing messages are parsed via one frame so all connec-
tions between the server and the agent will be handled by one class so any changes in
server configuration can be handled easily by only changing this frame. Our agent
architecture can be divided into the following modules and below we demonstrate
relations between modules of our agent architecture:

1. Operator Interface

2. Communication

3. Exploration

4. Victim Detection and Obstacle Avoidance

5. Localization, Autonomous Navigation and Mapping

6. Sensor and Actuators (and location of them on robot’s body)

Operator Interface

l Control Commands

‘Communication Station

10

Exploration
e
Localization & Mapping Wictim Detection

Mavigation & Path Plannig Obstade Avoidance

Relation between moduls

—_ =

Locamotion

Sensors & Actuators J/

Wnknown Envirenment

Fig.3 Relations between modules of our agent architecture

6 Conclusion and Future Decision

This paper has discussed goals and features of ETB simulated virtual agents, in-
cluding detailed specifications and algorithms. Our team consists of 5 people who 2
of them have the experience of participating in RobpCup competitions; however this
is the first time that ETB is participating in Virtual Robot Competitions. For this
competition we tried to test our team and obtain positive and negative side of our
team code and develop it. Also, we demonstrated SLAM, exploration, communica-
tion and some basics were introduced. Furthermore, some applicable approaches and
useful algorithms are presented to discover the unknown world around. We hope to
implement fully autonomous agents with distributed decision making system which
can give a proper map in short time and more accuracy by developing our SLAM
algorithm and more reliable victim detection skills.

References

1. Birk, A., Kenn, H.: control architecture for a rescue robot ensuring safe semi- autonom-
ous operation. In Kaminka, G., U. Lima, P., Rojas, R., eds.: RoboCup-02: Robot Soccer
World Cup

2. Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. IEEE Proceed-
ings, special issue on Multi-Robot Systems

3. J.A. Castellanos and J.D. Tardos. Mobile Robot Localization and Map Building:
A Multisensor Fusion Approach. Kluwer Academic Publishers, Boston, MA, 2000.

4. G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A
solution to the simultaneous localization and map building (SLAM) problem. IEEE
Transactions of Robotics and Automation, 2001.

5. H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista, and S. Scheding. “A Bayesian
algorithm for simultaneous localization and map building”. In Proceedings of the 10th
International Symposium of Robotics Research (ISRR01), 2001.

6. Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with applications
to large-scale mapping of urban structures. Int. J. Rob. Res., 25(5-6):403_429,
2006. ISSN 0278-3649.

7. Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, September 2005.
ISBN 0262201623.

8. Manifold SLAM: a Multi-Agent Simultaneous Localization and Mapping System for the
RoboCup Rescue Virtual Robots Competition written by Bayu Slamet Max Pfingsthorn
Master in Artificial Intelligence at the Universiteit van Amsterdam.Date of the public

defense: December 11, 2006.

9. Andrew Howard, Lynne E. Parker, and Gaurav S. Sukhatme. Experiments with large
heterogeneous mobile robot team: Exploration, mapping, dployment and detection.
International Journal of Robotics Research, 25(5):431_447, May 2006.

10. StuartRussell, PeterNorvig, Artificiallntelligence:AModernApproach,
Pearson Education, (2002.4).

