
SOSVR Team Description Paper
Robocup 2017 Rescue Virtual Robot League

Mahdi Taherahmadi, Sajjad Azami, MohammadHossein GohariNejad, Mostafa
Ahmadi, and Saeed Shiry Ghidary

Cognitive Robotics Lab, Amirkabir University of Technology (Tehran Polytechnic),
No. 424, Hafez Ave., Tehran, Iran. P. O. Box

{sajjadaazami,14taher}@gmail.com

Abstract. This paper describes the approach used by Team SOSVR of
CEIT department of Amirkabir University of Technology for participa-
tion in the 2017 RoboCup Rescue Simulation, Virtual Robot competi-
tion. We address our methods focused on the autonomous exploration
of disaster sites in order to aid victims in a simulated area. Our system
provides software solutions for the addressed problem based on ROS
framework and uses Gazebo as a simulation environment. In 2017, the
team mainly focuses on full autonomy of system which will be possible
by improving vision system, robust navigation, efficient exploration and
SOSVR utility packages. Same as the first year of our participation in
the Virtual Robot league, our platform and its major components will
be released publicly.

Keywords: RoboCup, USAR, Virtual Robot, Gazebo Simulation, ROS,
Navigation, Multi-Agent, Victim Detection

1 Introduction

Using autonomous robots in tough situations such as earthquakes, tornados,
and urban disasters to aid victims is obviously safer, faster, and more efficient.
RoboCup Virtual Robot league has challenged this problem in a simulated envi-
ronment. Team SOS of CEIT department of AUT has been participating in 2D
simulation league since 2002 with outstanding results. The Advent new simula-
tion environment and ROS in the Virtual Robot league in RoboCup lead us to
found a new branch of SOS team in order to work on more realistic and crucial
challenges. Team SOSVR established in late 2015 within Cognitive Robotics lab
of the department driven by the goal of creating a team of heterogeneous robots
to be used in USAR situations[1]. The team participated in RoboCup 2016 for
the first time focusing on developing a well-documented base code to be used by
ROS-Gazebo community.

For RoboCup 2017, we have solved base code challenge and the main focus
is on autonomy and vision based multi-agent exploration. Also, heterogeneous
robots are going to be used for the first time by the team. Major additions and
changes compared to previous year participation are:



2 M. Taherahmadi, S. Azami, M. GohariNejad, M. Ahmadi, S. Shiry

1. Development of various Convolutional Neural Networks to create robust vic-
tim detection system.

2. Using PID control for navigation purpose.
3. Improving the autonomous state machine.
4. Using heterogeneous team of robots, including UAV and different UGVs.
5. Development of SOSVR Exploration, a novel exploration system for au-

tonomous efficient exploration of UGVs.
6. Improving SOSVR Controller, Human-Robot interface developed in 2016 by

Qt framework in order to provide a control panel for human agent to control
robot team.

7. Base code release, which is well documented and is available under team’s
GitHub repository(https://github.com/SOSVR/).

2 System Architecture

In this section, we are going to describe new developments of the previous sys-
tem[5]. To reach the purpose of robust navigation and exploration, we need a
reliable perception system. We have enhanced some parameters of SLAM pack-
ages we used before to fulfill our needs. We are planning to work on this part in
future, for this year, we have focused on multi-robot exploration, task planning,
and victim detection strategies.

2.1 Navigation

Navigation systems mainly consist of Mapping, Localization and Path planning
algorithms. Same as the last year we used our previous packages[5] and config-
uration with some enhancement and optimization in parameters regarding to
our new robot models or newly implemented methods which are going to be
described below.

Autonomous Exploration Controlling the robot by a human operator for
long periods of time is hard, time-consuming, inefficient, and in some cases even
impossible because either a direct connection or a human operator is not avail-
able. In the multi-robot scenario, the situation gets even worse. Since each robot
needs at least one operator for reliable functioning a lot of human resources are
required. As a result, autonomous exploration is of great importance.

This year we have created our own autonomous exploration system which
operates based on different states a robot can have and the overall situation
of all other operating robots. Each state specifies the action the robot should
undertake to successfully explore its surrounding area and move to the next
state. Each State for a given robot depends on the percentage of the overall
exploration completed, the percentage of exploration of surrounding area of the
robot completed, the previous state of the robot and other factors explained
below. These states can form a state machine (as shown in figure 3) which can



SOSVR Team Description Paper 2017 3

Fig. 1. The state machine of robot during exploration, Red color indicates a final
outcome, Blue indicates a state, and Green indicates another state machine.

accurately describe the planning and behavior of our robot, therefore, we have
used SMACH to create the and join the state together.

The exploration system has two different modes named joint mode and direct
mode. Each one will be explained separately.

Percentage of exploration As described earlier the percentage of exploration
which we denote POX from now, is an important factor for the functionality of
our system. Figure 4 shows the global and local costmap of our robot used by
move base. Assuming a resolution of 0.05 and width and height of 36 for global
costmap it is realized that the matrix corresponding to the cost of cell in the
map has 720 rows and 720 columns. Since processing this matrix needs a large
amount of computational power we can break this matrix into blocks with a
fewer element and smaller size. The size of smaller blocks is mostly arbitrary
so we assume we have broken the matrix into 9 blocks with 240 rows and 240
columns each.

As shown in the figure 4 for the matrix A the block in the top right corner of
the matrix is A(0,2) and the block in bottom left corner is A(2,0). For the block
A(n,m) the Px(A(n,m)) is defined as below:

Px(A(n,m)) =

(n+1)×240∑
i=n×240

(m+1)×240∑
j=m×240

G(A(n,m)(i,j))

Where Gx is a function that returns -1 if and only if x = -1 and returns
1 otherwise. For a fully explored block Px is 57600. While for a completely
unknown block Px is -57600 and for block and Px = 0 means that about half
of the block has been explored. Therefore, we get the following formula for
calculating POX of the block:



4 M. Taherahmadi, S. Azami, M. GohariNejad, M. Ahmadi, S. Shiry

Fig. 2. The red square is the global costmap and the blue square is the local costmap.
note that A(0,2) is fully unknown while A(2,0) is almost fully explored.

POXA(n,m) =
Px(A(n,m)) + 57600

115200
× 100

now that we have the POX of a block we can decide whether we need to ex-
plore the block or not. Choosing the minimum POX for a block to be considered
for exploration is not somehow arbitrary but based upon the test it seems 80
percent is a good ratio.

Joint mode In the joint mode, we have a merged map for all robots and we also
have the position of all the robots relative to each other. In this situation, each
robot will divide the map of its surrounding area to several blocks with equal
sizes. It will then compute how much of a block is explored by determining how
many cells (pixels)within a block have known values. Based on the current state
of the robot it may pick a block to explore. In this case, the robot will try
to visit several points in the block which have been chosen by the algorithm.
Different outcomes are possible and in the aforementioned state machine all
these outcomes are handled and they will result in different states.

Assuming the robot does not pick a block either because it cannot find an
unexplored block or its not possible to get to a chosen block or even failing
to explore a block after doing all the behavior and possible actions robot will
signal the master node which in response by checking the global merged map
and finding a goal for the robot far out of its surrounding area and with a small
number of explored cells.

Direct mode This mode is very similar to the joint mode especially when
the robot tries to explore its surrounding area. Since in this mode we have
neither a merged map nor the location of robots relative to each other, instead



SOSVR Team Description Paper 2017 5

of contacting a master node and waiting for a response from the master node,
the robot will now divide its global map into super blocks and tries to find a
goal in an unexplored area.

However, if any time during the operation our map sharing node manages to
create a global merged map for all robots then direct mode will be disabled and
exploration will continue in joint mode.

Recovery Behaviors As situations encountered by the robot may be very
unique or may present extremely difficult challenges without a certain strategy
to overcome the problem. there is always a possibility that the exploration state
machine may not be fully reliable or in some cases even operational. Therefore,
the system is designed with a few safeguards. Since each state defines a set of
situations, distinguishable from other situations,the system is capable of accept-
ing new situations simply by defining them as new state and adding them to
the state machine. This allows us to improve the exploration system over the
time and as new experiences are gained. Another safeguard is the recovery state
machine in the system. It is possible that the robot becomes stuck either due to
operator errors or the weaknesses in autonomous strategy or motion planning
algorithm. In the recovery state machine which is nested inside the exploration
state machine depending on the orientation and speed of the robot different con-
trol policies are exploited to recover the robot back to functional state. Most of
these methods are recovery behaviors existing in move base package but with
some optimizations for our model using trial and error.

Map-Merging There are two approaches toward the problem of merging dif-
ferent maps from robots and building a globally shared map. One is when the
co-ordination and orientation of robots are known. In this case we just need to
put the map of each robot in the right place. The other case is when the above-
mentioned data is not provided. for this purpose we used a Template Matching
Algorithm to find overlapping areas in maps to merge them according to their
similarities.

PID Controller PID control is by far the most common way of using feedback
in natural and man-made systems. [2]

This year we have exploited a PID algorithm in our control loop to minimize
the error of the output.

In our concept control loop is provided by a controller which its goal is to
minimize the output error by changing of a control variable u(t), in our case
u(t) is the speed of robot which we are going to calculate the error arising from
a sudden change in rotational speed of wheels that causes some shakes in the
robot. The unstable robot may distort explored map so victim detection process
will not be effective.

We used PID algorithm to minimize the error value in output of robot nav-
igation into the Gazebo environment. this is provided by using a control loop



6 M. Taherahmadi, S. Azami, M. GohariNejad, M. Ahmadi, S. Shiry

which continuously calculates the error value between ideal output and measured
one, then we have to change input values to reach the ideal set point.

these corrected input values, are obtained by proportional, integral, and
derivative terms according to the PID formula below[3]:

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de

dt

2.2 Victim Detection

Our implementation is based on Caffe[6]. Caffe is a deep learning framework
and training parameters are mainly the same as in original papers. Details are
in Table 1. SqueezeNet v1.1 was chosen from different versions of SqueezeNet
because of less computation and it is fine tuned for our purpose. We used a Nvidia
Geforce GTX 980 with 16 gigabytes of RAM to train our models.[4] To train

Table 1. Training parameters details. Batch size were limited due to lack of memory.
Learning Rate is multiplied by gamma every stepsize.

Parameter value

Iteration 2000

Batch Size 64

Base Learning Rate 0.001

Learning Rate Policy step

Step Size 500

Gamma 0.1

Momentum 0.9

the SqueezeNet model we gathered images from three victims(see Figure 5 for
samples). 500 images of each victim were selected. We also gathered 1500 random
non-victim images from gazebo environment. These 1500 victim and 1500 non-
victim images were used as our dataset. We make these images publicly available
and encourage others to add images of their own to help gather a large dataset
of different kinds of victims for future research.

Different experiments were conducted to evaluate the performance of the
model. First, victim and non-victim images were shuffled separately and 66%
of each were chosen for training, the rest were chosen for the test set. Due to
randomness in training procedure, the model was trained 5 times and average
accuracy on the test set is 99.7%.

Time needed for every forward pass of architectures is reported in Table
2. Our measurements were on two different GPUs(GTX 980 with 2048 Cuda
cores and GT 620m with 96 Cuda cores), a general purpose laptop CPU and a



SOSVR Team Description Paper 2017 7

Fig. 3. Sample of used data set.

minicomputer CPU. As expected, SqueezeNet is fast and runs in a reasonable
time on robot’s system.

We are planning to use and test other NN architectures like Tiny YOLO
until RoboCup event in July.

Table 2. Average test time of every architecture on different platforms.

GTX980(ms) GT620m(ms) Core i5 2.50GHz(ms) Celeron Dual Core 1.10GHz(ms)

SqueezeNet 2.13 16.63 48.55 173.33

2.3 Human-Robot Interface

SOSVR Panel is our Control Panel visualizer which is a plugin for rqt that allows
human operator to see robot state, map, camera feed, and switch between robot
controllers. This year, we have updated the plugin, bug fixes have been done and
it is publicly available on team’s repository. Any contribution on this package is
appreciated. See figure 6 for a screen shot.

2.4 Base Code Package

According to our new contributions to the base code released last year[5], this
package is richer and well documented now. It contains standard robot defi-
nition(P3AT), SOSVR controller, Teleop, SLAM, SOSVR Exploration, Victim
Detection, SOSVR Panel and related Launch files. As such, the new version of
base code containing above-discussed works will be released after RoboCup 2017
competition.

3 Innovations

As noted in section 1, this year, we have developed a CNN based robust victim
detection system and an exploration system namely SOSVR exploration. Also,



8 M. Taherahmadi, S. Azami, M. GohariNejad, M. Ahmadi, S. Shiry

Fig. 4. Screen shot of SOSVR controller. Shared map is on top left. Control buttons
are at bottom left and camera feeds are shown in right half of panel.

we have used PID controller for navigation purpose, improved autonomous state
machine and SOSVR controller. Also, we have used heterogeneous robots and
their cooperation.

4 Conclusion and Future Works

After all, these new contributions are under development and they need test and
improvement. Besides we have in mind to move toward new challenges like 3D
mapping, object recognition and manipulation. As well we have to consider real-
istic wireless communication between mobile robots despite using unconstrained
communication, which in near future will be added to the competition.

References

1. Kohlbrecher, Stefan, Rose, Christian, Koert, Dorothea, Manns, Paul, Kunz, Florian,
Wartusch, Benedikt, Daun, Kevin, Stumpf, Alexander & von Stryk, Oskar (2016).
RoboCup Rescue 2016 Team Description Paper Hector Darmstadt.

2. Aström, Karl Johan & Murray, Richard M (2010). Feedback systems: an introduc-
tion for scientists and engineers. Princeton university press

3. Araki, M. (2009). PID control. Control Systems, Robotics and Automation: Sys-
tem Analysis and Control: Classical Approaches II, Unbehauen, H.(Ed.). EOLSS
Publishers Co. Ltd., Oxford, UK., ISBN-13: 9781848265912, 58-79.

4. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and¡ 0.5 MB model size. arXiv
preprint arXiv:1602.07360. 2016 Feb 24.



SOSVR Team Description Paper 2017 9

5. Taherahmadi, M., Azami, S. & Shiry, S. (2016). SOSvr Team Description Paper:
RoboCup 2016, Rescue Virtual Robot League.

6. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S,
Darrell T. Caffe: Convolutional architecture for fast feature embedding. InProceed-
ings of the 22nd ACM international conference on Multimedia 2014 Nov 3 (pp.
675-678). ACM.


