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Abstract. This paper describes the main features of the UvA Trilearn
soccer simulation team, which participated for the first time at the

RoboCup-2001 competition. The main concepts of the previous teams will
be addressed, followed by the improvements introduced in UvA Trilearn
2003. These include an extension of the intercept skill, improved passing

behavior and especially the usage of coordination graphs to specify the

coordination requirements between the different agents. Finally, we will

give some conclusions and describe future research directions.

1 Introduction

The UvA Trilearn 2001 [1] soccer simulation team was built by two masters’
students for their graduation project. Much of the effort in this team had gone
into getting the lower levels to work, since we felt that these would be the most
crucial for the success of the team. This has among other things led to a multi-
threaded three-layer architecture with an advanced synchronization method, a
probabilistic world model from which several high-level conclusions could be
derived and a layered skills hierarchy.

UvA Trilearn 2002 [3] contained several improvements which included im-
proved localization methods using particle filters, behavior modeling of team-
mates, and an action selection method based on a priority-confidence model.
During these projects much attention was paid to software engineering issues

to facilitate future use. This led to highly modular object oriented code and to
a multi-level log system for quick debugging (similar to [6]). We have released
large parts of our source code1, which several teams use as a basis. The released
source code contains our lower levels (synchronization, world model, basic agent
skills) together with a simple high-level strategy, similar to the one released by
FC Portugal [5] after RoboCup-2000 to make a working team.
In our current work, UvA Trilearn 2003, we have made three extensions

to our team. First of all, we have improved the intercept skill such that it also
takes opponents into account to determine the best interception point. Secondly,
we improved the passing behavior of the players by taking much more passing
options in consideration. This is possible since we use an efficient algorithm
[7] to calculate the interception time of an opponent. Finally, we make use of
coordination graphs [2] to specify the coordination between the agents.

1 Available from http://www.science.uva.nl/~jellekok/robocup/.



2 Intercept skill

In UvA Trilearn 2003 we have improved our interception skill. Intercepting the
ball is one of the most important player skills that is frequently used by every
type of player. In the previous teams, a player would always intercept the ball
at the first future position of the ball it was able to reach in the same number of
cycles. For this an iterative scheme was used to compute the future positions of
the ball. A loop was executed in which a prediction method was used to predict
the position qt+i of the ball a number of cycles i into the future and to predict
the number of cycles n that the agent will need to reach this position. This was
repeated for increasing values of i until n < i in which case it was assumed that
the agent should be able to reach the point qt+i before the ball. The agent would
then move to this position qt+i.
Obviously, this is not the optimal behavior in all situations. Because of the

stochastic nature of the simulator, it was possible that the agent just missed
the ball and had to follow the ball until the ball lost almost all its velocity.
Furthermore, this method does not take opponents into account that are able to
intercept the ball at an earlier position than the intercepting player.
In our current implementation, we use an efficient numerical algorithm [7] to

compute the interception time of an agent to the ball. This method first abstracts
away from the discrete nature of the simulator by assuming that the the ball
moves in its current direction with instantaneous velocity (V = V0e

−t/τ , τ = 2s)
and the player moves with a fixed (maximum) velocity. Several simple heuristics
can be used to compensate for the turning and acceleration of the agent to reach
the used velocity. Using these simplifications it is possible to calculate the first
possible interception time efficiently using an adaption of Newton’s method.
In most cases the interception time can now be determined in less than five
iterations. See the appendix of [7] for the complete procedure.
Using this method, we can calculate the first position qt+k along the ball

trajectory at which an opponent can intercept the ball. Our previous intercept
method is now adapted such that the intercepting player will move to the ball
position qt+k in case k < n. When k > n the intercepting player will not move
to the first possible interception point, but to the point qt+j such that n ≤ j ≤ k

and the calculated distance between qt+j and the point the intercepting player is
able to reach in j cycles is minimized. The agent thus performs a ‘safer’ intercept
and is less dependent on the stochasticity of the simulator.

3 Passing options

In our previous teams, we only looked to one passing option when considering
to play the ball to a teammate. The direction of the pass was determined based
on the widest angle between the different opponents and the speed was based
on the desired (fixed) end speed of the ball when it reached the teammate. The
successfulness of this pass was determined based on the interception time of the
fastest opponent to this ball trajectory. We only considered one passing option



since our method to calculate the specific interception time for the opponents
was too expensive to be applied many times during one cycle.
In our current team, we use the same procedure as described in Section 2

to determine the interception time of the opponents to a possible future ball
trajectory. Using this method, we can generate many different ball trajectories
with different speeds and efficiently calculate the interception time of our team-
mate and that of the opponents to this ball trajectory. We then take that ball
trajectory in which our teammate intercepts the ball just in front of its current
position and furthermore maximizes the time difference between the interception
time of our teammate and the fastest opponent.
This has a big advantage over the previous method, as it results in a much

wider variety of passing options.

4 Coordination

Depending on the current situation, certain agents on the field have to coordinate
their actions, i.e. the agent with the ball must decide to which nearby agent
to pass, the receivers must anticipate a future pass and the defenders must
coordinate to organize the defense. In our current team, we incorporate the
coordination requirements between the agents using coordination graphs [2].
A coordination graph (CG) represents the coordination requirements of a

system. A node in the graph represents an agent, while an edge in the graph
defines a (possible directed) dependency between two agents. After the topology
of the graph is dynamically updated based on the current context, only the in-
terconnected agents have to coordinate their actions at any particular instance
to find the joint optimal action. This can be done using an efficient variable
elimination algorithm. Via a context-specific decomposition of the problem into
smaller subproblems, CGs thus offer scalable solutions to the problem of multi-
agent decision making.
In order to apply CGs to the continuous domain we assign roles to the agents

and then coordinate the different roles [4]. Such an assignment provides a natural
way to parametrize a coordination structure over a continuous domain. Further-
more, this can be regarded as an abstraction of a continuous state to a discrete
context, allowing the application of existing techniques for discrete-state CGs.
Finally, roles can reduce the action space of the agents by ‘locking out’ spe-
cific actions. For example, the role of the goalkeeper does not include the action
‘score’, and in a ‘passive’ role the action ‘shoot’ is deactivated. Such a reduction
of the action space can offer computational savings, but more importantly it can
facilitate the solution of a local coordination game by restricting the joint action
space to a subspace that contains only one Nash equilibrium.
In our current team, we use this framework to improve upon the passing be-

tween the teammates. Instead of being reactive (a player only starts intercepting
after it observes a change in the ball velocity), the coordination framework makes
sure that the agents already move to the direction the pass will be going to before
the pass is actually given. An example of a rule to specify such a coordination



pass can be defined as follows:

〈ppasser1 ; has-role-receiver(j) ∧

¬isPassBlocked(i, j, dir) ∧

ai = passTo(j, dir) ∧

aj = moveTo(dir) : u(j, dir)〉 ∀j 6= i

See [4] for details of the algorithm.

5 Conclusion and future directions

In this paper we have quickly addressed some improvement in our new soccer
simulation team UvA Trilearn 2003. We haven’t provided experiments to test
the results of the improvements, but the outcome of the regional tournaments
in which we participated2 does show that the improvements have a positive
influence on the team as a whole.
For future directions, we are interested in applying reinforcement learning

techniques to a continuous-domain CG in order to learn the payoff functions
in an automatic way. Finally, from an application point of view we want to
apply the CG model further to the simulation RoboCup, such that the agents
also coordinate during other actions than passing, like organizing the defense or
obstructing opponent passes.
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