
Team Description RoboLog Koblenz 2D?

Heni Ben Amor, Joschka B̈odecker, Anita Maas, Irene Markelic, Jan Murray,
Oliver Obst, Achim Rettinger, Christoph Ringelstein, and Markus Rollmann

Universiẗat Koblenz-Landau, AI Research Group, D-56070 Koblenz
{amor,jboedeck,amaas,markelic,murray,fruit,achim,cringel,rollmark}@uni-koblenz.de

Abstract. RoboLog Koblenz is participating in the 2D Simulated Soccer com-
petition for the 6th time. In this paper we focus on two of the features we im-
proved from last year to this year. To improve the goal shot behavior of the
RoboLog agents we included a scoring policy learned from observing games from
RoboCup03 and the SSIL. In addition a smart dribbling algorithm based onIn-
verse Steering Behaviors–an extension to steering behaviors–has been added to
the agents.

1 Introduction

Our team RoboLog Koblenz is participating in the 2D Simulated Soccer competition
for the 6th time. As in previous years we are using ourC++ kernel as interface to the
soccer simulator. Our flexible layered architecture allows for realizing the high level
behavior of an agent in both Prolog andC++. Consequently, different players of our
team are implemented in Prolog or inC++.

The low-levelC++ part handles the parsing of messages, maintains a consistent
world model, and implements the basic skills of our players. We do not further de-
scribe the architecture here, as it has been described in previous papers [5–7]. Instead,
in the subsequent sections, we focus on describing two of the features we improved
from last year to this year.

2 Learning from Recorded Games

As in previous years goal shots seemed to be a problem for our team, we spent some
time investigating how to improve our hand-coded scoring policy. The Optimal Scoring
Problem is stated as follows (see [3]):

Find the point in the goal where the probability of scoring is the highest when
the ball is shot to this point in a given situation.

When observed in more detail another side of this problem appears to be essential
for finding an optimal scoring policy:

? This research has been partially supported the special research program DFG-SPP 1125 funded
by the German Research Council (DFG).



Given the point to shoot, determine the probability of scoring if the ball is shot
to this point in a given situation.

This heuristic is especially interesting for deciding whether to shoot or not. Both prob-
lems are correlated to each other. If you can solve the first problem you know which
point to test for the second problem. But if you can solve the second problem you can
also find a good solution to the first problem by comparing numerous different points
and taking the one with the highest probability of scoring. Thus, the second problem
appears like an intermediate step to solve the first statement of the Optimal Scoring
Problem.

2.1 Related Work

A detailed implementation of the scoring policy used by the UvA Trilearn 2001 team
is described in [3]. Data was generated from repeated experiments where a striker was
placed somewhere in front of the goal, an opponent goalie was placed somewhere in
the goal and the ball was shot to some position in the goal. The outcome of this shot
was evaluated statistically and in the end a function is presented that can calculate the
probability of scoring if shot to a given point in the goal. Finally the best point to shoot
is determined by computing the probability for some discretized scoring points on the
goal line and choosing the global maximum of the results.

There are three major differences to our approach. On the one hand the training data
is not generated by simulation of situations but already existing data is extracted from
pre-recorded soccer games (logfiles). On the other hand far more influencing factors of a
goalshot situation are taken into account compared to only regarding one player and one
goalie. Furthermore two separate modules are developed to solve both problems stated
above independently from each other. Thus, there is no need for discretized testing of
shooting points.

In other approaches to learning from opponent behavior (see for instance [2, 9]),
learning focused on a single opponent team, either by generating the matches dynam-
ically or by using single logfiles from a given team; instead with using several logfiles
from different teams we are aiming at learning a more general scoring policy.

2.2 Goalshot Situation Extraction

To obtain training samples, goalshot situations must be identified in logfiles. It is not
enough to find successful scoring attempts because positive and negative training sam-
ples are needed for classifying the success rate. The characteristics of a potential goal-
shot are:

– A striker has kicked the ball.
– The striker is in a reasonable distance to the opponent goal.
– The shot has the potential to reach the opponent goal (reasonable power and direc-

tion).

Even if all those conditions apply, further tests need to be made to make sure that it
is a valid goalshot and to obtain information about the outcome of this scoring attempt.
To determine that, the successive cycles are scanned and checked individually:



– Can the situation be classified as goal, out, goalie catch or offside? Then it is a valid
shot and the outcome is known.

– But if the ball was kicked by a player it could also be classified as passing (if kicked
by a player from the own team) or dribbling (if kicked by the same striker again)
and not as a scoring attempt. Unlike if kicked by an opponent defender or opponent
goalie it is interpreted as a valid but unsuccessful goalshot.

20 30 40 50 60
0

5

10

15

20

25

30

35

player_c.y

20 30 40 50 60
0

5

10

15

20

25

30

35

player_c.x

Fig. 1.Position of striker while kicking; successful shots

We have implemented a procedure that extracted automatically goal shots from Log-
files from RoboCup 2003 and from Simulated Soccer Internet League. For details of this
procedure, please see [10].

A quick summary on some interesting statistical data from almost 1000 analyzed
matches is that we identified 9315 goal shot attempts. Around 40% of these attempts
were successful, and 77% of the unsuccessful ones were caught by the goalie. For an
overview of the positions from where successful goal shots were attempted see Fig. 1,
for the positions where successful shots crossed the goal line see Fig. 2.

2.3 Learning from Successful Examples

For the learning task, we used two basic 3-layered backpropagation neural networks.
The first network is needed for the prediction of the point to shoot that maximizes the



likelihood of scoring given a specific situation. The second network should be able to
classify the success rate of scoring given a specific situation and the point to shoot.
Diverse issues needed to be addressed concerning the pragmatics of neural learning.

After tweaking the various parameters involved in neural network learning, the pre-
diction accuracy of both networks on the evaluation set (a third data set) showed promis-
ing results.

Thebest-scoring-point networkgave a mean average error of 1.4 units which is rea-
sonable if considered that the goal is more than 14 units wide. Thesuccess-rate network
classified 85.4% of the goal/no-goal patterns correctly. Calculating the contribution fac-
tor for each input variable is another way to get information about the network perfor-
mance1. Shortly summerized, we identified the angle between ball and goalie as the
most important factor, followed by the distance to the goalie. For defenders the distance
is more important than the angle and the closest defender has the biggest influence.

2.4 Experimental Results

For the purpose of finetuning and evaluating the performance 400 test matches were
played. To have a direct comparison this was done by letting the conventional RoboLog
team play against a modified RoboLog team with the new neural modules. Again, the
goalshot extraction heuristic mentioned above was used to automatically evaluate all
games played. Thus, the ratio of scored goals to scoring attempts could be calculated
and the exact performance was determined.

After some finetuning, we compared both approaches in 60 final matches. As Ta-
ble 1 shows, the ratio of successful shots to scoring attempts is significantly better for
the team with the neural networks. In the end the new goalshot module could clearly
outperform the conventional module by winning twice as often.

Another proof for the potentials of this approach is the performance of the RoboLog
team at the RoboCup German Open 2004 where the new module was used for the first
time in a competition. The bad results are due to the general team play. After having
a closer look it becomes obvious that there were hardly any chances to score for the
RoboLog team because the RoboLog strikers rarely got close to the goal. So once more

1 Contribution factors are a rough measure of the importance of a variable in predicting the
network’s output, relative to the other input variables in the same network.

-8-7-6-5-4-3-2-1012345678

51

55

Fig. 2.Goal line crossings: dark areas denote more crossings



Table 1.Test results for the final 60 matches

average final
conventionalANN

games total 60
games won 11 21

ratio won/total 0.183 0.35

shots total 75 83
shots goals 23 33

ratio goals/shots 0.307 0.398

the ratio of goals to scoring attempts is significant and it turns out to be exactly 50%.
For the first time a RoboLog agent managed to score against the Brainstormers04 team.
Brainstormers04 ranked third in the end and conceded only two more goals in the whole
competition.

3 Dribbling with Inverse Steering Behaviors

Besides our goal shot policy, we also improved our dribbling behavior. To implement
a new dribbling behavior, we made use of steering behaviors.Steeringis the reactive,
non-deliberative movement of physical agents [8]. A basic ingredient to steering are
steering behaviors, reactive procedures that take local information about the environ-
ment as input, producing a steering vector (or steering goal) as output. A set of basic
steering behaviors presented in [12] includesseek, flee, pursuit, evasion, containment,
andobstacle avoidancefor static obstacles.

To produce complex behaviors, e.g. flocking or queuing at a doorway, several steer-
ing behaviors can be combined with each other at a time. Each of the basic steering
behaviors is executed separately or in parallel, and the different steering goals have to
be combined to one result. Reynolds proposes different ways of “blending” steering
behaviors, e.g. using their weighted average or choosing only one behavior at a time
according to given priorities (see [11, 12]).

The combination process of these behaviors poses several difficulties, as each of
them makes its decision independently of the others. This can result in conflicting com-
mands, and depending on the arbitration method single behaviors can possibly cancel
the effect of each other out or result in suboptimal paths. The arbitration method of
building a weighted average of steering vectors shares its greatest disadvantages with
potential field methods when used for robot navigation [4]:

– Trap situations due to local minima (cyclic behavior).
– No passage between closely spaced obstacles.
– Oscillations in narrow passages or in the presence of obstacles.

3.1 Inverse Steering Behaviors

To overcome the drawbacks mentioned in the last section, we extended the concept of
steering behaviors. In the original approach, steering behaviors only take facts about the



environment as input and produce a single steering vector as output. Our approach addi-
tionally takes a number of different steering vectors as input denoting possible solutions
for the steering task. Based on a given criterion, each direction produces a certain cost.
In turn, from the calculated cost we produce a rating for each steering vector as output.
In principle we inverted the process of each single steering behavior, which is why we
call our approachInverse Steering Behaviors. To execute a single behavior, the steering
vector producing the smallest cost is selected.

To achieve complex tasks, several Inverse Steering Behaviors can be combined sim-
ilar to the original approach. In our case the problem is not to combine different steering
vectors or actions, but to merge the ratings for each given direction. All relevant behav-
iors for a task have to be executed, producing a rating for each given steering vector.
Merging the ratings is achieved with a heuristics combining ratings of all involved be-
haviors for each direction separately. The result of applying the heuristics for each given
steering vector is a list of ratings like the one produced by a single Inverse Steering Be-
haviors. Like in the case of single steering behaviors the “best” action can be chosen by
simply selecting the steering direction minimizing the cost.

The heuristics employed in the process of combining several behaviors is dependent
on the number of behaviors involved and specific to the complex task that has to be
achieved. For a detailed description on how we used Inverse Steering Behaviors for
dribbling while avoiding obstacles, see [1].

With an appropriate heuristics, merging the ratings for each single behavior can
produce better results than the original approach simply adding up steering vectors or
selecting one. In cases where two behaviors have conflicting desires, Inverse Steering
Behaviors will select a steering vector obeying each of the behaviors to a degree, and
thus make a reasonable compromise for all involved behaviors.

4 Ongoing and Future Work

Although we are focusing on our 3D team, there is still work on our 2D team, but only
regarding singular research aspects and not on the team behavior as a whole.

For future work we are planning to investigate on using machine learning techniques
to simplify building heuristics and to combine our hand crafted behaviors with machine
learned ones.

References

1. Heni Ben Amor, Oliver Obst, and Jan Murray. Fast, neat and under control: Inverse steering
behaviors for physical autonomous agents. Fachberichte Informatik 12–2003, Universität
Koblenz-Landau, Universität Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075
Koblenz, 2003.

2. Sebastian Buck and Martin Riedmiller. Learning situation dependent success rates of actions
in a robocup scenario. In R. Mizoguchi and J. Slaney, editors,PRICAI 2000 Topics in Artifi-
cial Intelligence, number 1886 in Lecture Notes in Artificial Intelligence, page 809. Springer
Verlag, 2000.



3. Jelle Kok, Remco de Boer, and Nikos Vlassis. Towards an optimal scoring policy for sim-
ulated soccer agents. In C. Torras M. Gini, W. Shen and H. Yuasa, editors,Proceedings of
the 7th International Conference on Intelligent Autonomous Systems, pages 195–198. IOS
Press, California, March 2002.

4. Yoram Koren and Johann Borenstein. Potential field methods and their inherent limitations
for mobile robot navigation. InProceedings of the IEEE Int. Conf. on Robotics and Automa-
tion, pages 1398–1404, 1991.

5. Jan Murray, Oliver Obst, and Frieder Stolzenburg. Towards a logical approach for soccer
agents engineering. In Tucker Balch, Peter Stone, and Gerhard Kraetzschmar, editors,Pro-
ceedings of the 4th International Workshop on RoboCup, pages 90–99, Melbourne, 2000.

6. Jan Murray, Oliver Obst, and Frieder Stolzenburg. RoboLog Koblenz 2001. In Andreas
Birk, Silvia Coradeschi, and Satoshi Tadokoro, editors,RoboCup 2001: Robot Soccer World
Cup V, volume 2377 ofLecture Notes in Artificial Intelligence, pages 526–530. Springer,
Berlin, Heidelberg, New York, 2002. Team description.

7. Jan Murray, Oliver Obst, and Frieder Stolzenburg. RoboLog Koblenz 2002 – short team
description. In Gal A. Kaminka, Pedro U. Lima, and Raul Rojas, editors,RoboCup 2002:
Robot Soccer World Cup VI, Berlin, Heidelberg, New York, 2003. Springer.

8. Alexander Nareyek, Nick Porcino, and Mark Kolenski. AI interface standards: The road
ahead. A Roundtable Discussion of the 2003 Game Developers Conference, March 2003.
http://www.ai-center.com/events/gdc-2003-roundtable/.

9. Tayler Raines, Milind Tambe, and Stacy Marsella. Towards automated team analysis: A
machine learning approach. InThird international RoboCup competitions and workshop,
1999.

10. Achim Rettinger. Learning a scoring policy for simulated soccer agents. Studienarbeit,
Fachbereich Informatik, Universität Koblenz-Landau, May 2004.

11. Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.Computer
Graphics, 21(4):25–34, 1987.

12. Craig W. Reynolds. Steering behaviors for autonomous characters, 1999.


