
Zenit-NewERA Team Description

Lev Stankevich, Alexei Kritchoun, Anton Ivanov, Sergey Serebryakov

NE Joint-Stock Company
21, Partizanskaya st., St. Petersburg, 195248, Russia

e-mail: alexy_kr@mail.ru
Tel. +7 812 303 89 76

Abstract. MAS researches and development, realizing ideas of the distributed
data processing and learning, are the key features of the artificial intelligence
framework. Nowadays MAS is widely used for modeling and controlling of the
objects with strategic and tactical behavior. RoboCup, especially Simulation
League, is the excellent environment for such researches. In this paper we
present brief description of Zenit-New ERA RoboCup Simulation League team,
mostly focusing on the new feature of our team – scenarios implementation.

1 Introduction

Zenit-New ERA RoboCup Simulation League team development started at 2001. The
team has been participating in RoboCup competitions since spring ‘2002 (under ERA-
Polytech name). We mainly focused our research to high level procedures (defense
and offense) and inter-agent cooperation.

The team code was initially based on CMUnited’99, but by now only CMU’s
world model is used in the code.

During development we understood that it’s really difficult to create a module able
to make “right” decisions in all situations player meets in the game. Thus, we decided
to develop several little modules, which make decisions in local situations, and
combine them into one technique, called scenarios.

2 Dynamic formations

The agent behavior without ball is the very important and complex task. Efficiency of
defense and offense depends on realization of this behavior.

The principle of dynamic formations is the basic principle of our team. The players
dispose themselves among three vertical lines: defense line, semi-defense line and
offense line (see Fig. 1). These lines dynamically change their X coordinate due to
game situation, ball position and opponents players position (to avoid offside and to
create artificial offside).

2 Lev Stankevich, Alexei Kritchoun, Anton Ivanov, Sergey Serebryakov

defense
line

semi-offense
line

offense
line

Fig. 1. Formation lines

The formula for ball-depended line x coordinate calculation:

()()
engthSP_pitch_l

engthSP_pitch_lball_xdef_posatt_posdef_posnewX /2- +
+= , (1)

− newX – new line x coordinate,
− def_pos – defense line x coordinate,
− att_pos – offense line x coordinate,
− ball_x – ball x coordinate,
− SP_pitch_length – pitch length.

Then this value is corrected to avoid or to make the offside.
Also each line has speed parameter. All players on a line move with the same

speed, not overtaking each other and not lagging behind. Also we can control players’
stamina changing this speed. Coordination mechanism is very important in this
approach - the players should change the value of the speed on the same value at the
same time. The changing of the speed happens when players change the behavior
mode - defense or offense. In defense mode the speed of the offense line decreases,
that allows attackers to have a rest before the next attack, and when in offense mode,
the speed of the defense line decreases, that allows defense players to have a rest.

Formations are represented by 3-digit numbers: the 1st digit is number of
defenders, the 2nd is number of midfielders, and the 3rd is the number of offending
players. Our team supports small number of the formations: 433, 532 and 334, but it's
quite sufficient for our goals. Formation 433 is the default formation. The players start
the game with this formation. It is necessary to achieve the game improvement by
changing the formation from one to another. The problem is that the players can
change formation not at the same time and to the different formations. To solve this
problem, the team changes the formation at the moments when game globally
changes. It is obvious that one of such global parameters is the score of the game.
Thus it is possible to develop an algorithm: If we miss too much (assume more than
one per minute), all team simultaneously changes its formation to 532, if we score
much (assume more than one per minute), it is possible to change the formation to
attacking 334. Otherwise we leave current formation (by default 433).

Zenit-NewERA Team Description 3

3 Scenario implementation

3.1 Scenario definition

Formally scenario can be represented by the following set:

Sc=<N, P, I, T, St>, (1)

where,
− N – scenario name, each scenario must have unique name;
− P – scenario priority (when more than one scenario can be executed, the scenario

with the maximum priority is chosen);
− I – scenario start condition;
− T– agent’s involvement condition into scenario (each agent in scenario has its

unique number);
− St – set of steps, including all possible agent’s actions in scenario, conditions of

advantage to other steps, scenario stopping condition.
In every simulation cycle the agent checks start conditions of all known scenarios.

For each agent involved into the scenario, agent’s involvement condition must be true.
This condition is concerned agent’s position inside some area on the field. If the
involvement condition is false for any agent then scenario is considered failed to
execute. Only when both the conditions I and T are true, the scenario is considered as
potential scenario that can be executed, and it is placed into a list. Afterwards, the
agent chooses the scenario with maximum priority. When scenario starts, a mapping
of players’ uniform numbers to internal scenario numbers occurs. This allows creating
scenarios independent on involved agents’ uniform numbers. Besides, a special
message to other teammates is sent during scenario initialization. This message
contains the information about started scenario.

Scenario start condition may contain several conditions, interconnected by the
logical operations “or”, “and” and “not”. The following conditions are allowed:
− The ball is situated in concrete field area.
− The fastest teammate to the ball is the teammate with given role (right midfielder,

central forward and so on).
− The fastest teammate to the ball is the teammate with number N, given in scenario

during initialization.
− Some field area contains players with given roles. The number of players lies in

range [min, max].
− Some field area contains players with specified numbers. The number of players

lies in range [min, max]. The numbers are the internal scenario numbers for
teammates, and uniform numbers for opponents.
Involvement conditions is IT = Number, where Number is the internal player’s

number in the scenario and IT is one of the following:
1. Area – the agent, placed on this area, is involved into scenario.
2. Role – the agent with this role is involved into scenario.
3. Role-area –the agent with this role, placed on given area, is involved into scenario.

4 Lev Stankevich, Alexei Kritchoun, Anton Ivanov, Sergey Serebryakov

Step is the set of the parameters:

St=<N, Wb, Nb, Lc>, (2)

where
− N – the unique step name for considered scenario;

Wb – the set of the actions for player with ball, e. g. to pass the ball to specific
teammate, or to dribble to specific area, etc. The action can be zero action (none).
In this case, the agent acts as not involved into scenario.

− Nb – the set of actions for players without ball. The following actions are possible:
• To move to the center of some area,
• To mark first opponent from the given set,
• Zero action. In this case, the agent just turns to ball.

− Lc – the condition of advantage to other steps. The conditions are written the
following way:

 if condition goto step
If the condition is true, specified step is executed.

There are some other scenario termination conditions that agent checks every
simulation cycle by default. The agent stops the scenario execution if it doesn’t know
own or ball position, or if the game is not in play_on mode (corner kick, side kick
etc). If the agent is in defense mode, then it doesn’t check scenario starting conditions.
At every cycle the agent without the ball checks 2 conditions: If the fastest player to
the ball is surely opponent or the teammate not involved into scenario, then agent
leaves scenario.

3.2 Communication in the scenario

During the scenario execution the special communication mechanism is used. Only
players, involved into scenario, are allowed to communicate with each other. The
fastest player to ball reports about ball position and velocity. The players without ball
report about own positions and positions of opponents.

Fig. 2 shows the scenario execution diagram.
According to the diagram, first agent checks the scenario start conditions. If some

scenario has been chosen, the agent selects scenario step. Then, the stop condition is
checked. If the scenario must be stopped, the special message is sent to inform other
agents involved into scenario. Otherwise the agent checks whether it is in the scenario
process, and if it is true, the set of possible action for scenario is chosen. Afterwards,
the agent selects and executes the action from the set. Next agent’s cycle begins with
determining the scenario step.

3.3 Scenario example

This section describes an example of the scenario for 2 players attacking opponent
goal in penalty area.

The first line defines the scenario name and its priority.

Zenit-NewERA Team Description 5

Fig. 2. Scenario execution diagram.

Scenario: "Parallel_lines_right" 1.0
Next line defines the involvement conditions. Two players are defined. The first

player must be situated not far than 5 meters from the ball, and the second one must
be situated inside given rectangle:

Init_teammates: (circle Vector(ball) 5.0) =1 #with ball
 (rectangle Vector(30.0,-20.0) Vector(45.0,0.0))=2
Next line describes the scenario start condition. The condition consists of two

simple conditions, connected by logical operation AND. The first condition defines
ball position, and the second one defines that there must be no opponents inside circle
with radius 3 meters.

Init_scenario:
 (and (bpos (rectangle Vector(30.0,0.0)
 Vector (52.0,20.0)))
 (opp {All} 0 0 (circle Vector(45.0,-7.0) 3.0))
)
“Steps” keyword starts the scenario steps description. The first step has the name

“FirstLineGo”:

Steps:
 "FirstLineGo"

Set of
scenarios

World
model

Stop the
scenario?

Scenario
step

Scenario
selection

Action
selection

Action
execution

Communication
protocol

Yes

No

Communication

6 Lev Stankevich, Alexei Kritchoun, Anton Ivanov, Sergey Serebryakov

First, the actions for player with the ball are defined. The player checks, whether
he can shoot to the goal, and if not, he dribbles to given point:

Ball_owner: (ballto Vector(45.0,10.0) {score dribble})
Then, the conditions for player without the ball are defined (line number 2). His

goal is to move to a certain position on the field:

No_ball:
 2: (pos Vector(40.0,-7.0))
Afterwards, the advance condition is defined: if the ball appears inside some

rectangle, the scenario advances to step “SecondLineGo”.

Leave_conditions:
 if (bpos (rectangle Vector(43.0,-20.0)
 Vector(52.5,20.0)))
 goto "SecondLineGo"
Second step has one more condition for player with ball. This condition is checked,

if the first two actions fail: the ball can be kicked out to the point, where the player 2
is situated.

"SecondLineGo"
 Ball_owner: (ballto Vector(45.0,10.0) {score hold})
 (ballto Vector(our,2) {clear})
For the second player the movement to the position is defined. The position

depends on ball coordinates.

 No_ball:
 2: (pos Vector(-1.0,0.0 Vector(ball_x,-7.0)))
For the second step two advance conditions are presented. The first is that the

player 2 is situated inside some circle with radius 4 meters. The second one is that the
fastest player to ball is the teammate 2.

 Leave_conditions:
 if (our {2} 1 1 (circle Vector(ball_x,-7.0) 4.0))
 goto "Cross"
 if (bowner 2) goto "FinalKICK"
In the third step player with ball tries to shoot the ball to the opponent’s goal. If

this is impossible, he crosses the ball along goal.

"Cross"
 Ball_owner: (ballto Vector(ball_x,-7.0)
 {score clear})
For the second player the actions are the same as in previous step:

No_ball: 2: (pos Vector(-1.0,0.0 Vector(ball_x,-7.0)))
The advance condition repeats the condition of the second step:

Leave_conditions: if(bowner 2) goto "FinalKICK"

Zenit-NewERA Team Description 7

Fig. 3. Scenario steps

In the fourth step player tries to shoot the ball to the opponent goal. If he can’t do
it, he kicks the ball to goal corner:

"FinalKICK"
 Ball_owner:
 (ballto Vector(52.5,6.5) {score clear})
Now, there’s no actions for the player 1 (without ball). He just watches the ball:

 No_ball: 1: none
Fig. 3 illustrates the described scenario steps.

Step 2: SecondLineGo

Step 3: Cross Step 4: FinalKick

Step 1: FirstLineGo

8 Lev Stankevich, Alexei Kritchoun, Anton Ivanov, Sergey Serebryakov

The scenarios help the team to improve the team coordination. In the future we’ll
going to expand scenario language to get more flexibility in scenario writing. Besides,
we’re going to include a number of scenarios into scenario base. We believe that it
will greatly increase team performance.

4 Conclusion

In this paper we presented the brief description of the Zenit-New ERA RoboCup
simulation team. As our new developed system is the scenarios, the main part of this
paper is scenario implementation description. The scenario technique shows good
results. We played a huge number of the games against our old team, and our new
team was able to win with result about 20-0. In the future we’re planning to increase
the number of the scenarios and to use reinforcement learning technique in the
scenarios.

