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Abstract. This paper shortly describes the main features of the UvA

Trilearn soccer simulation team, which participates since 2001 in the
RoboCup competition. The main concepts of the previous teams are
addressed, followed by the improvements introduced in UvA Trilearn

2004. The latter are related to the coordination of the agents using the
coordination graph structure introduced in UvA Trilearn 2003. We will
show how we apply this model both for action selection and for teammate
modeling.

1 Introduction

The UvA Trilearn 2001 soccer simulation team [1] was built by two masters’
students for their graduation project. Much of the effort in this team had gone
into getting the lower levels to work, since we felt that these would be the most
crucial for the success of the team. This has among other things led to a multi-
threaded three-layer architecture with an advanced synchronization method, a
probabilistic world model from which several high-level conclusions could be
derived and a layered skills hierarchy.

UvA Trilearn 2002 [4] contained several improvements including improved
localization methods using particle filters, behavior modeling of teammates, and
an action selection method based on a priority-confidence model.
In UvA Trilearn 2003, we improved the intercept skill by taking opponents

into account to determine the best interception point and improved the passing
behavior of the players by taking much more passing options in consideration.
This was possible by applying an efficient algorithm [8] to calculate the intercep-
tion time of an opponent. However, the most important improvement was the
introduction of coordination graphs [3] in order to coordinate the actions of the
agents. With these improvements, UvA Trilearn 2003 won the German Open,
American Open and the RoboCup-2003 world championships.
We released a large part of our UvA Trilearn 2003 source code1 on which

several other teams have based their work. The released code consists of our
lower levels (synchronization, world model, basic agent skills) in combination
with a simple high-level strategy, similar to the one released by FC Portugal [6]
after RoboCup-2000 to make a working team.
In this paper, we shortly explain how we apply the coordination graph model

to coordinate the different agents and to model the behavior of our teammates.

1 Available from http://www.science.uva.nl/~jellekok/robocup/.



(a) Complete coordination Graph.
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(b) Possible coordination graph after
role distribution.

Fig. 1. After observing the ball position and knowing the ball position, the coordination
graph is simplified considerably.

2 Coordination Graphs

In systems where multiple agents have to coordinate their actions, it is infeasible
to model all possible joint actions since this number grows exponentially with
the number of agents. Fortunately, most problems exhibit the property that each
agent only has to coordinate with a small subset of the other agents, e.g., a soccer
agent controlling the ball only has to coordinate with agents within passing
distance. A principled approach to exploit such dependencies involves the use of
a coordination graph (CG), which represents the coordination requirements of a
system [2].
In this graph, each node represents an agent, and an edge indicates that the

corresponding agents have to coordinate their actions. In order to reach a jointly
optimal action, a variable elimination algorithm is applied that iteratively solves
the local coordination problems one by one and propagates the result through the
graph using a message passing scheme. In a context-specific CG [3] the topology
of the graph is first dynamically updated based on the current state of the world
before the elimination algorithm is applied. See [3, 5] for details of the algorithm.
The continuous nature of the state space makes the direct application of

context-specific CGs difficult. Therefore, we appropriately ‘discretize’ the con-
tinuous state by assigning roles to the agents and then, instead of coordinating
the different agents, coordinate the different roles [7]. It turns out that such an
approach offers additional benefits: the set of roles not only allows for the defini-
tion of natural coordination rules that exploit prior knowledge about the domain,
but also constrain the feasible action space of the agents. This greatly simplifies
the modeling and the solution of the problem at hand. Fig. 1 shows how the
distribution of roles after observing the ball position simplifies the coordination
graph considerably.
In our UvA Trilearn 2003 team, we used this framework to improve upon the

passing between the teammates. Instead of being reactive (a player only starts
intercepting after it observes a change in the ball velocity), the coordination
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framework makes sure that the agents already move to the free space the ball
will be passed to before the pass is actually given. An example of a rule to specify
such a coordination pass can be defined as follows:

〈ppasser
1

; has-role-receiver(j) ∧

¬isPassBlocked(i, j, dir) ∧

ai = passTo(j, dir) ∧

aj = moveTo(dir) : u(j, dir)〉 ∀j 6= i

where agent i is the passer, agent j is a possible receiver and dir is the direction
relative to agent j to which the pass is oriented. More rules are added for each
role to specify other possible actions, e.g., dribbling, moving to a strategic po-
sition, etc. Using the variable elimination algorithm the individual actions that
maximize the received payoff for all applicable rules in the current context are
determined. See [5] for details about the used rules and the algorithm.
The original algorithm depends on a message passing system in order to dis-

tribute the rules over the network. However, in the RoboCup simulation domain
it is not possible to perform this amount of communication. However, the variable
elimination algorithm can still be applied if we further impose the requirement
that the payoff function of an agent i is common knowledge among all agents
that are reachable from i in the CG. Since only agents that are reachable in the
CG need to coordinate their actions, the above requirement in fact frees agents
from having to communicate their local payoff functions during optimization.
These common knowledge assumption about the fully observable state cannot
be made during competition since every agent only receives information of the
part of the field to which its neck is oriented. However, the coordination graph
structure specifies which parts of the state are relevant for coordination, i.e.,
the neighbors in the graph and their associated state variables. Therefore, we
adjust the looking mechanism of the agents to actively orient their neck to the
part of the field in which its neighbors in the graph are located and then assume
that this part of the world is common knowledge among these agents. When
all involved agents observe this information they can independently solve the
local graph which is disconnected from the rest of the CG and so compensate for
the missing state information. In our example, the passer and the receivers thus
change their looking direction to their neighbors in the graph in order to get
a good approximation of the relevant part of the state needed for coordination
and are not interested in the passive players which are not connected to their
subgraph.
In our UvA Trilearn 2004 team we use this approach to improve upon the

information that is needed to apply the variable elimination algorithm. Addi-
tionally, we use the calculated joint action to update the information of each
teammate with its calculated individual action in order to improve upon the
estimated locations of the teammates. Finally, we are currently working on ex-
tending the coordination dependencies between the agents, e.g., to coordinate
the defenders and to coordinate marking the opponent players to obstruct their
play when they are in control of the ball.
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3 Conclusion

In this paper we briefly addressed the main contributions of our simulation team
UvA Trilearn. The main improvement in UvA Trilearn 2004 is the specification of
additional coordination requirements between the players using the coordination
graph structure introduced in UvA Trilearn 2003 and the modeling of teammates
using their calculated action derived from the variable elimination algorithm.
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