
The Dainamite 2007 Team Description

Holger Endert1, Robert Wetzker1, Thomas Karbe2,
Axel Heßler1, and Felix Brossmann1

1 DAI-Labor, TU Berlin
Faculty of Electrical Engineering

and Computer Science
{holger.endert|robert.wetzker|axel.hessler|

felix.brossmann}@dai-labor.de
2 Technische Universität Berlin
Faculty of Electrical Engineering

and Computer Science
thomaskarbe@gmx.de

Abstract. This paper gives an overview about the structure of the
dainamite agent and highlights recent improvements of the world-model
and the tactic, which were integrated into our framework. To this end,
we present effective and robust methods for dynamic role assignment,
movement and reachability analysis and opponent modelling. Finally we
conclude by assessing our approaches and presenting current and future
work.

1 Introduction

The Dainamite robocup team has been implemented and improved during stu-
dent projects since october 2004 3. Much of the work done was influenced by [1],
which provided a good guideline for developing the basic skills, the world-model
and the synchronization with the server. However, since the completion of the
basic framework, most of the parts were refined or even replaced, such that the
majority of the given team was built upon own ideas.
In this paper we will give an overview about the current state of the Dainamite
robocup team architecture, and highlight some recent developments, which im-
proved the performance of the team since the last championship in 2006. First,
we provide a brief summary of the structure of an agent in Section 2. A more de-
tailed description can be found in [2] and [3]. Thereafter, we address our concepts
of dynamic role assignment, the calculation of reachability and agent reflection
in Section 3, 4 and 5, which are novel within our team. Finally, we conclude
in Section 6 by evaluating our framework and discussing planned and currently
existing extensions.

3 Dainamite is implemented in Java, because it was more common to participating
students, accepting the loss of performance compared to C/C++

2 The Agent Architecture

The behaviour of a dainamite agent results mainly from the interaction of its
constituting components. These are the world-model, the perception, the syn-
chronization (short: synchro), the action, the tactic and the planning devices.
In Figure 1 (taken from [2]), their structure and control flow within the agent
is visualized. Due to the reactive nature of the simulation, acting is done only
after sensing, i.e. after receiving a message from the server that contains sensor
information. The first step is to translate the perceived message into usable ob-
jects within the perception, and update the world model accordingly. Next, the
synchro is informed about the type of the message that has arrived and whether
a new server-cycle has begun. The synchro than decides, whether an action has
to be computed. Generally, as visual information arrives last, the computation
starts with their arrival. However, if this information is expected to arrive late
in the current cycle, an action might also be determined based on the body-
sense information. The action calculation takes place at different stages. First
the tactic modul, called from the synchro, selects the current agent’s state. The
selection is done by first filtering all states that don’t suit the current situation
and than comparing the remaining states using planning and/or estimated value
functions. The complete mechanism is described in [2]. Once the best state was
found, it is executed by calling the appropriate skill inside the action compo-
nent, which maps a high-level action (state, i.e. dribble) to a low-level action
(dash, turn, kick, etc.). Finally, the resulting low-level actions are forwarded to
the synchro and sent to the server.

3 Dynamic Role Assignment

One of the most important factors for a good team performance in Robocup
2D is an efficient energy(stamina) management. Each player possesses a given
amount of stamina at the beginning of each game half which decreases when he
accelerates (dashing) and recovers over time. Without stamina players tend to
be much slower. Therefore it is crucial to avoid unnecessary movements as much
as possible. One way of doing so is the dynamic assignment of player roles.
The dainamite framework knows 11 different player roles. The behaviour of
each dainamite player only depends on it’s role and not on the player’s num-
ber4. These roles are strongly related to a player’s position inside the team’s
formation and there exist roles like ‘attacker-left’ or ‘defender-middle-left’. The
initial assignment of these roles is static as each role refers to exactly one player.
However, due to ball-interception, low stamina or tactical behaviour the relative
positions of two players may change during the game. Therefore, in order to save
stamina, we decided to dynamically swap roles whenever two players change po-
sitions i.e. when the left attacker finds himself right of the middle attacker. This
way we intend to avoid unnecessary movements resulting in a better stamina
usage and a faster positioning behaviour.
4 The goalie never changes his role.

Fig. 1. Interaction of the agents internal components

The role assigment is done based on a predefined ‘perfect’ team formation. The
‘perfect’ team formation describes where all players (roles) should be positioned
in the given game situation. Based on this information we find the combination
of players to roles with the smallest average distance to the perfect positions
using a weighted least squares algorithm. The weights are determined by the im-
portance of the role which may differ i.e. based on the distance to the ball.
As a soccer team is a distributed system and the knowledge of each entity may
differ we have to make sure that the mapping of roles to players is consistent
for all teammates. However, we don’t communicate the different mappings in
order to achieve accordance. Instead we try to communicate as much position-
ing informations as possible thus avoiding most of the knowledge discrepancy
and therefore leading to a more consistent mapping behaviour. In practice this
measure seems to allow only a very limited number of inconsistencies.
The dynamic role assigment used by our team leads to a better stamina man-
agement and a faster overall movement. However, it is still unclear how this
mechanism should be adapted best when we explicitly consider heterogenous
players i.e. if you want your center attacker to be the fastest player on the field
then this constraint has to be considered during the mapping process. We plan
to investigate this behaviour in our future research activities.

4 Reachable Area

In a robocup game, the players and the ball are the only moving objects on the
field. A players movement is composed of dash actions, turn actions and the drift
that results from its current speed. The player can influence this movement in
almost each cycle. On the other hand, the ball movement can only be influnced
by kick and tackle actions of players. Thus, if the ball is not close to a player,
its future movement is predictable (up to some noise that will be ignored here
for reasons of simplification).
In almost all situations of a robocup game, an agent needs knowledge about pos-
sible movements of players and the ball. Due to the large action space, possible
movements are very numerous, and it is infeasible to calculate all of them. A
good example is the problem of finding a good pass to a teammate. Here one
could choose a subset of all possible pass directions and kick powers and cal-
culate the best of them. Using this method involves two problems. The first is
the expensive calculation and the second is, that we don’t know if the optimal
pass is contained within the chosen subset. Another way of calculating possible
movements of ball and player is to use geometric objects to represent reachable
areas of an object instead of taking some examples of its movement. In the pass
calculation example, one could find out, which passes can be intercepted by op-
ponents and which will be received by a teammate.
In our calculation, all geometric objects are represented by lines and parts of cir-
cles. In Figure 2 (a) we present the reachable area of a player. This area shows
the positions a player can reach in a given number of cycles. It includes the kick
distance of the player (important for interception). As can be seen, the player
can cover the longest distance by only dashing (forward or backward). If he uses
one or two turns, the distance that he can pass decreases. The ball movement
can be analyzed accordingly.
Our approach is to use this method for determining the applicatability of com-
plex actions, which depend on the movement properties of the players and the
ball. In order to reduce complexity, we therefore analyze distinct cases. For ex-
ample, since area intersection is often expensive to calculate, we simplified the
problem by assuming the kick power or the kick direction to be given. The re-
sulting calculation can be done much easier with only one variable part of a kick
command. In Figure 2 (b) the possible positions of a ball that was tackled is
visualized. In such cases, the kick direction is given by the body direction of the
player. So he can control the next position of the ball only by choosing the tackle
power. The possible positions are marked as blue line. This geometric form is
a result of the ball speed limitations. On the other hand, in Figure 2 (c) the
possible positions of a ball that was kicked with a given kick power and variable
kick direction is shown. The form is the result of intersecting two circles. The
first has the actual ball position in its center, and defines the maximum cover-
able distance (2.7m). The other circle has its center at the next ball position,
resulting from adding its current speed. It defines the area, to which the ball can
be kicked with the given kick power.

Fig. 2. Geometric calculation of a reachability. (a) Reachable area of a player, (b)
Possible positions of the ball after a kick with given direction and variable power, (c)
Possible positions of the ball after a kick with given power and variable direction (d) -
(f) Geometric calculation of the Scoring

In our current version of the dainamite team, the three geometric analyses
are used for the scoring calculation. The best kick is calculated by using a given
power of 100 and a variable direction. The best tackling is calculated by using
a given direction and variable power. In 2 (d) - (f) we present an example of
this calculation. The player is in a good position to attack the goal. Only the
keeper is in front of him. The blue area marks all the angles in that the ball
could be shot towards teh goal. In the next picture (e), the keeper can catch
some of these balls. These angles are henceforth marked red. In the third picture
(f), the angles that lead to a successful scoring are marked green. The lower part
is marked red because of some security distance to not hit the post.
We remark, that an advantage of this method is the good visualization and hence
testing possibility. In order to improve its applicability in distinct situations,
further work will be spent on approximating the real reachable areas, which are
often different due to noise or suboptimal actions taken by players.

5 Agent Reflection and Opponent Modelling

In some cases agents should not only reason about their local actions, but also
about the actions of other agents as well. The reasons therefore are manifold.
For instance, if agents are teammates, they have to coordinate their actions, and
if they are opponents, they can estimate the actions in order to react optimally
with respect to the opponents behaviour. Another example is improving the
accuracy of the world-model. Knowing the actions of other agents allows to infer
information about parts of the world which weren’t seen lately, for instance by
applying the results of movement analysis as done in [4].

In order to let agents reason about the actions of others, we equipped each
player object in the world-model of an agent with a tactical component (state
evaluation) together with a few higher level actions (states), which are easy and
inexpensive to use in state-evaluation. A list of the states used for reflection is
given in Table 1. From this extension, we let the agents infer new information,
by determining the expected action of an agent using the knowledge of the
estimator, and applying the effects of that action to the player. The kind of
information we derive is called expected players and next players, both holding
predicted player states. The former refers to the players assumed state (i.e. its
position, speed, ...) in the current cycle, the latter to the assumed players state
in the next cycle. Both information types are important enhancements, that are
used as detailed next.

5.1 Usage of Expected Players

This information is primarily an improvement of the world-model, und subse-
quently enhances the determination of own actions that depend on them. For
example, the action of each intercepting agent is always calculated within usual
ball interception5, and thus the prediction is already given and usable by the
5 It is assumed, that each agent intercepts as fast as possible.

State Teammate Opponent Comment

InterceptBall yes yes State that lets an agent intercept the ball.

AttackState yes no State that defines the movement of an of-
fensive or midfield player, when the team
is in ball-possession.

MoveBackState no yes Defines the movement of an opponent
back, when its team is not in ball-
possession.

Table 1. List of states currently used for agent reflection.

reflecting state. The MoveBackState is far more imprecise, but also important,
as can be seen in Figure 3. There, opponents are moved towards their own goal,
if they are not visible and our team is in ball-possession. Especially when at-
tacking the opponents goal, some players are often in an agents back, and thus
can’t be seen. In the figure, the world-model of the yellow agent is displayed.
In the upper part, he can see the red player (visualized as red opaque player),
which is indicated by the yellow area. Then he turns towards the ball in order to
intercept and during the following 10 cycles he can’t see the red player anymore.
After 5 cycles, the expected position is quite good, as can be seen in the middle
part of the figure. In another 5 cycles, the expected position becomes more in-
correct, but is even more precise than the last seen position, which is displayed
as black spot (lowest part of the figure). Table 2 shows the average improvement
of an agents world-model accuracy for the expected players, compared to last
seen positions, whereas ∆Dist Game is the average distance error in a complete
game, and ∆Dist Attack the average distance error only in attacking situations.
As can bee seen, the expected positions are better in average, though only little
when averaging over the complete game. When considering the attacking cases
separately, the difference on average error is higher, following from the impact
of the MoveBackState.

∆Dist Game ∆Dist Attack

Seen Player 2.48m 3.43m

Expected Player 2.36m 3.05m

Improvement 0.12m 0.38m
Table 2. Average error in player-position knowledge of attacking agents.

Certainly, the overall performance of the prediction depends on the behaviour
of the opponent team. If this behaves completely different than assumed, the er-
ror will increase instead. In either case the prediction is a rather pessimistic
one, such that action selection will be more cautious. Hence, the team perfor-
mance should not suffer, if the opponent behaves different. Finally note that our

Fig. 3. Difference between expected and last seen players.

world-model is also improved via communication that was deactivated for the
prediction evaluation.

5.2 Usage of Next Players

This information is relevant for coordination purposes between teammates, es-
pecially for passing. In this case, the following situation is given: If the ball-
controller decides to perform a pass, the receiver will notice that soonest in the
next cycle, either through visual information or communication. Thus, the re-
ceiver has one action to perform, before deciding to intercept the pass. If the
ball-controller can predict this action, and subsequently the next state of the
teammate, its assessment of the pass-situation becomes more accurate, and its
ability to perform critical passes increases. Hence the AttackState predicts the
behaviour of teammates, if in ball-possession. Note, that this reasoning is done
only by one party (i.e. the ball-controller), whereas the other acts based on its
usual tactics. Otherwise, if both use reflection, their predictions have to include
the reflections of the other party, which has to include the reflection of the orig-
inal party, and so on. Figure 4 shows the players world-model with next players,
displayed as black shadows. The ball-controlling player assumes, that player 9 is
moving forward, facilitating a steep pass.

Fig. 4. Visualization of next players used for pass calculation.

5.3 Remarks

Despite our partial usage of the reflection framework, some promising results
were already achieved. Since an accurate world-model influences the team per-
formance, it seems worthy to spend effort on this task. In order to make this
framework more effective, we have to create better estimators, without increas-
ing the computational costs significantly. Therefore, we plan to use the coach
for learning a positioning concept of the opponents. Then, clang [5] can be used
to communicate rules, which can subsequently be evaluated by the reflection
framework of each agent during simulation.

6 Conclusion

As we have shown, we spent a lot of work in creating an appropriate world-model
that provides optimal information for situation assessment, that subsequently
improved related tactical decisions. Additionally, we achieved a higher flexibility
and saved resources by applying dynamic role assignments and increased our
accuracy using the given reachability determination. In order to evaluate our
new features, we also spent work on visualization of the world-model and the
tactic. To this end, we extended the Soccerscope monitor from [6] with features
for an efficient analysis, for creating statistics and for manual interaction when
used within the dainamite framework.
Beside optimizing the basic framework and related components, we are currently
working on the integration of learning capabilities for both, player agents and the
coach. The former will be based on reinforcement learning in order to improve
skills, using the piqle framework [7] as starting point. The latter will be based on
CBR, and concentrates on optimal player type selection in a first step. Further
work will be done within predicting opponents movements as described in [4].
Finally, skills and tactics in general will be improved, especially the offensive
movement without ball when attacking the opponents goal.

References

1. de Boer, R., Kok, J.: The incremental development of a synthetic multi-agent
system: The uva trilearn 2001 robotic soccer simulation team. (2002)

2. Endert, H.: The dainamite 2006 team description. In: RoboCup 2006 - Proceedings
of the International Symposium. Lecture Notes in Artificial Intelligence, Springer
(2006)

3. Endert, H., Wetzker, R., Karbe, T., Heßler, A., Brossmann, F., Büttner, P.: The
dainamite agent framework. Technical report, DAI-Labor, Technische Universität
Berlin, Germany (2006)

4. Kuhlmann, G., Knox, W.B., Stone, P.: Know thine enemy: A champion RoboCup
coach agent. In: Proceedings of the Twenty-First National Conference on Artificial
Intelligence. (2006) 1463–68

5. Cheny, M., Dorer, K., Foroughi, E., Heintz, F., Huangy, Z., Kapetanakis, S., Kos-
tiadis, K., Kummeneje, J., Murray, J., Noda, I., Obst, O., Riley, P., Stevens, T.,
Wangy, Y., Yiny, X.: Robocup soccer server. (2003)

6. Takahashi, S.: (Yowai website: http://ne.cs.uec.ac.jp/ newone/soccerscope2003/)
7. Comite, F.D.: Piqle - a platform for implementation of q-learning experiments

(2006)

