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Abstract. This paper presents the RoboCup Simulation League Team
KickOffTUG, in particular its aims and research topics. As RoboCup in
Austria is young we work on the development of the Austrian RoboCup
community.
Our research focus comprises agent architectures, decision making and
behaviour modeling. Therefore, we present a general architecture for
robotic control and its concrete implementation on our agents. Moreover,
the topics of decision-making and automatic execution analysis in dy-
namic and uncertain environments are discussed. We propose a decision-
making algorithm adapting the concepts of teleo-reactive programs and
an analysis approach based on automaton-encoded meta-knowledge.
We conclude with a description of the proposed architecture as an edu-
cation and research platform for various levels and give an overview over
our future research activities.

1 Introduction

The KickOffTUG-team was founded in 2004 and participates in the 2D RoboCup
Simulation League (RSL). In the initial phase the team comprised three bachelor
students doing their theses. Meanwhile it provides a field for master and further
bachelor theses, practicals and a wide range of research activities.
Our general research focus comprises agent architectures, decision making, plan-
ning, learning, behaviour modeling, i.e. the formalization of soccer knowledge,
and several issues of low-level robotic control.
Therefore, we have developed a two-level architecture comprising a general decision-
making level and a RoboCup-specific execution level. Thereby, we separate high-
level behaviour modeling along with decision derivation, planning and learning
from low-level robotic issues, extending the RSL to an education and research
platform as each academic point-of-entry can be regarded independently without
the need for understanding the internals of other components.
As robust decision-making is another important field of research we have de-
veloped a special decision-making algorithm which adapts the TR-formalism
(proposed in [1]) and operates on a transformation of TR-programs (regarding
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STRIPS instances as proposed in [2]) to trees.
During the development of our project we have always been working on the prob-
lem of execution analysis and formal verification in the dynamic soccer server
environment and thus suggest the use of a automaton-based meta-description
of actions. This allows us to detect faults and to measure the performance (in
terms of success and failure distinguishing various types) of each implementation
in contrast to other teams.
In the following we will use the term ’decision-making’ to describe the retrieval
of the best possible, executable action, which will in this context also be called
’decision’, whereas the ’execution of a decision’ means the execution of the im-
plementation associated with a retrieved action.

2 RoboCup in Austria

RoboCup is relatively young in Austria as the first teams were created in 2002.
Therefore, one of our major concerns is the promotion of the RSL in Austria.
Due to the high abstractness of the simulated game this league has a major
disadvantage, which is a virtue as well. On the one hand its academic ambi-
tions and research activities are especially hard to convey to the public, but at
the same time the RoboCup Simulation League provides an ideal starting point
for engagement in RoboCup. In order to foster the development of RoboCup in
Austria we founded the Austrian National Committee together with two other
Austrian teams in 2006.
The participation in joined public events as well as organizing own RSL specific
activities provides another great opportunity for the team to address and attract
a growing number of professionals, researchers, students and even a large general
audience.
Furthermore we plan to promote RoboCup (esp. the RSL) in schools, thus en-
suring future interest in competitions and robotics in Austria.

3 A two-level architecture

3.1 Overview

We have developed a general Java-based architecture with two separate layers: a
state-of-the-art low-level base on the execution-level for RoboCup specific tasks
as well as a high-level control system on the decision-making-level which uses
Prolog as logic back end for derivation of decisions.
Figure 1 shows a general system overview with focus on the two-level separation.

3.2 Execution Level

The Execution Level (EL) comprises the three main components WorldModel,
Execution and Conditions along with further packages containing functionality



Fig. 1. System overview illustrating the separation in execution-level (top) and
decision-making-level (bottom)

for server connection, algebraic calculations and some tactics modules to name
a few. The tactics modules create commands like ’pointto’ or ’turnneck’ which
are auxiliary and may be sent additionally to the main commands retrieved by
the decision-making level.
The central structure in the EL is the world model which is responsible for
providing accurate information about field objects (including self). In order to
get the best possible quality of our sensed data we developed several filtering
techniques like Kalman filters for object tracking (as proposed by [3] and [4])
and particle filters for self-localization (see [5]).
The quality of the results in the conditions and execution packages depends on
this accuracy. Whereas various conditions are used to evaluate the actual state
given by the world model, the execution breaks high-order actions, like dribbling,
intercepting and scoring goals, down to server-protocol commands and ensures
their dispatching via world model and server modules.
Most of the concepts applied in the EL are an extension based on the UvA-source
[6] regarding the recently released source base of DAI [7].

3.3 Decision-Making Level

The proposed Decision-Making Level (DML) is a general control framework
which allows for the implementation of arbitrary, versatile applicable decision-
making algorithms as well as the monitoring and analysis of the execution. Fur-
thermore it defines general decision-making entities and their syntax and seman-
tics with aid of uniform XML-languages.
Thus, the DML uses plans to define the agents’ behaviour and extract a decision



what action to perform next. Each plan is represented by a hierarchy of actions
and each action consists in turn of a set of preconditions (to check feasibility), a
set of postconditions (to check success), the EL-action to be executed and a set
of parameters to this action. General attributes for actions and conditions are
assigned in associated ini-files.
Pre- and postcondition checks are performed by the Prolog backend operating
on basic clauses which are evaluated in the EL.

Features The DML described has following fundamental features:

Generality The DML framework is independent from any RoboCup issues and
can be employed in different even non-robotic systems. It is able to take full re-
sponsibility for decision making and execution, planning, learning and/or logic
reasoning by providing simple, adaptive interfaces making low demands on what-
ever execution-level it should operate on. Some example uses could be its appli-
cation on Middle Size League robots, service robots or also economic process-
oriented systems.

Decision Making Any possible decision making algorithm (operating on either
static or dynamically created plans) can be implemented fast according to the
simple interface and event-handling scheme provided by the DML. Whenever
the EL requires the DML to derive a decision, all registered decision making
implementations are consulted.

Monitoring and Analysis of Execution During execution the complete decision
process can be stored and analysed to have the decisions made in the dynamic
and uncertain environment under best possible control.
Moreover concepts of automaton theory are applied to verify the execution (i.e.
implemented actions) by checking executed decisions with the aid of logged world
information against automaton-encoded meta-descriptions of each action imple-
mentation.

Uniform Language All items on which decision making is based are represented
by XML-files according to several XML schemes. When defining syntax and
semantics for plans, actions and conditions the most important properties were
generality and convenience. Thus, our languages enable the user to encode many
different formalisms, like for example STRIPS instances [2], TR-programs [1] or
a version of TDL [8] providing a basis for the according decision-making, learning
and planning instances.

Design The combination of several elements is necessary to implement the
decision-making level’s desired behaviour (cp. Figure 1):

– Decision-Making Interfaces and Algorithms
to traverse the plans and retrieve best-possible actions.



– Pools
containing all plans, actions and conditions, mapping from the string repre-
sentation in XML-files to concrete objects.

– Storage
keeping the decision process, world states, formalizations and arbitrary de-
bug info used for evaluation of the system’s performance.

– Prolog implementation
used for evaluating pre- and postconditions of all actions (our team is using
the fine Prolog-implementation tuProlog [9]).

– Gateway
as a general interface for the EL over which all requests operate.

All DML-functions can be accessed via a single gateway. This includes stor-
age and decision interfaces. Whenever a decision query event in the EL is raised
to indicate that a decision is necessary it is forwarded to each registered decision-
making algorithm which will execute an appropriate action.
Concerning decision-making all XML-encoded elements are built at startup:
Conditions are translated to Prolog code, action code is created and compiled
dynamically and plans are constructed using the action pool.

User Interfaces Two graphical user interfaces provide easy access to behaviour
modeling and analysis making it easy to teach or test various aspects of intelli-
gent systems on different levels (from non-professional up to professional appli-
cations).

Fig. 2. Project and Diagnosis GUI

Project GUI The Project GUI aids the user in defining each agent’s behaviour
by means of generating basic decision-making-objects (conditions, actions and
plans). EL-specific extensions can be included easily as demonstrated by game-
systems which link each agent to its behaviour, set-up position and nickname.
This way many alternative models can be created and tested against each other.



Diagnosis GUI The agents are capable of recording diagnosis information dur-
ing the game - all decisions made, each time step’s world state, the value of
all conditions applied on the world model and user-specific debug info (orga-
nized by categories). This information can be displayed and evaluated using the
Diagnosis GUI. Just like the Project GUI this user interface can be extended
EL specifically, too. In addition to the capability of displaying the mentioned
diagnosis information, it is hence possible for the RSL to compare the agent’s
world model against the exact server logs. This can be done via lists, graphical
representation of statistics or even graphical reproduction of the game marking
exact and logged positions.

3.4 Interaction

EL and DML interact over the DML’s gateway. The EL is constantly collecting
the server messages and incorporating them into the world model and requires
a decision each cycle. It therefore raises a decision query event in respect to the
present play mode.
In the next step the decision making algorithm (or several as more than one may
be registered) is informed and retrieves an action considering the given situation
by evaluating conditions. This evaluation is achieved via Prolog which further
links to the EL’s conditions-interface operating on the world model. By means
of such out-sourced inference general, highly abstract conditions can be imple-
mented and easily enhanced and optimized in Prolog source. The action is then
executed in the EL, again consulting the world model to collect all information
necessary to generate an appropriate command.
The use of Prolog to evaluate pre- and postconditions proves to be beneficial con-
cerning the principles of flexibility, extensibility, functionality and convenience
without having to reinvent the wheel. It serves as a robust logic backend for
various applications, and thus suits the claim for generality as well. As our
condition-implementations in the EL do not unify variables for reasons of sim-
plicity and straightforwardness but instead accept constants as parameters, the
DML has two options on how decisions are derived. Currently each condition
clause (i.e., an individual pre- or postcondition of an action) is evaluated inde-
pendently in the EL by grounding symbols over facts and calling the condition
afterwards. This works perfectly well if the condition space should be reduced,
e.g. for performance reasons. Full inference may be achieved by formalizing and
consulting the complete condition space before retrieving a decision.
Figure 3 illustrates the decision-making cycle. We explain the decision-making
process in more details using the following example. Assume that a new cycle
has just begun and the EL requested the DML to derive a decision. The decision-
making algorithm of player 1 is currently inspecting an action ’pass’ and needs
to check its preconditions, for example if the agent is in ball possession and
whether there is a team-mate to whom he can pass.
As mentioned above those preconditions have been translated to Prolog syntax
at startup:



Fig. 3. The interaction between DML and EL over Prolog describing the decision-
making cycle.

pass_pre :- self(X), hasBall(X), ownPlayer(Y), canPassTo(X,Y).
(This line has been simplified for reasons of convenience.)

Thus, Prolog is queried with pass pre and unifies X with 1 (the agent’s uni-
form number) using the fact self(1) and evaluates hasBall(1) next by calling
the EL. If the implementation of hasBall returns true Prolog unifies Y with
all possible uniform numbers (2-11) over predefined predicates until either the
clause canPassTo returns true or no further unification is possible. A concrete
own player Y can be passed to the implementation of ’pass’ to communicate the
pass-partner.

4 Decision Making

Our ’Decision-Making Algorithm for Dynamic Environments’ is based on the
teleo-reactive program formalism as proposed by [1]. As suggested in this paper
an agent’s behaviour (in case of the RSL depending on its position and role) is
defined by plans with each plan represented by a combination of actions, each
action having conditions associated to them.
We adapted this notion (in regard to the STRIPS-notation [2]) describing an
action to consist of

1. a set of preconditions Cpre,
2. a set of postconditions Cpost,
3. the name of a low level action A (with A′ as corresponding implementation)

to be executed and
4. a set of parameters PA which are passed when calling A′.

In contrast to TR-programs (which are basically encoding linear action sequences
from goal to basic action) all action-sequences are encoded in a single tree, where
the root depicts the start, siblings alternative actions and each leaf a possible



goal. This means, each path in a tree corresponds to a TR-program. Figure 4
illustrates how several TR-programs are transformed to a tree. The order in
which the programs are added as paths is essential as it defines the order in
which the actions are selected.

Fig. 4. TR-programs and their transformation to a simple exemplary tree.

The decision making algorithm starts at the root and traverses the tree in depth-
first manner (for each state/time step).
Following pseudo-code describes the algorithm in detail:

traverse(current_root):

FOR allChildrenOfCurrentRoot
retrieve action from actual_child;
IF checkPostconditions(action)
IF isLeaf(current_root)
do nothing and return; // a goal has been reached

ELSE
traverse(actual_child); //continue on next level

ELSE
IF checkPreconditions(action)
run action; //execute the action

Thus, if Cpre of A is satisfied, A′ can be executed, whereas if Cpost is satisfied
the state which the execution of A′ is to accomplish has already been reached.
Applied to the very simple exemplary tree in Figure 4 this means that if

– ’FindBall’ has Cpre={!seeBall(X)} and Cpost={seeBall(X)}
– ’Intercept’ has Cpre={seeBall(X),!hasBall(X)} and Cpost={hasBall(X)}
– the world state denotes that an agent sees the ball but is not in ball possession

the decision making algorithm would thus execute ’Intercept’ after

1. checking Cpost of ’FindBall’ (true)
2. checking Cpost of ’Intercept’ (false)



3. checking Cpre of ’Intercept’ (true)

ensuring that the ball is already in sight, the agent is not in ball possession, but
is able to intercept it. If the interception was successful, the next level’s actions
are examined. ’Pass’ would be performed next according to the same principle
provided that ’ScoreGoal’ was not feasible because the goal was well covered for
example.
Whenever a goal is reached or no sibling is left to be inspected no decision is
executed. The first case means that no better possibility could be executed and
a (for the moment) sufficient state has been reached. As one important property
for our trees is completeness (in terms of [1]), the second case is not to happen
because there is always an executable action.
The benefits of this approach are that while the advantages of TR-programs are
preserved, the algorithm is able to produce high quality decisions faster and at
the same time easier formalization is possible due to a more natural and bundled
way of plan description.

5 Automatic Action Analysis

One of the most challenging tasks for an autonomous agent is the execution of
actions in dynamic and uncertain environments. In RSL we have been facing the
problem of verifying whether an action performs its desired behaviour in order
to maintain robust decision execution. Therefore, we introduced a formalism of
automaton-encoded meta-descriptions of actions (compare [10] and [11]). Such
automata define a sequence of valid states along with transitions to error states
to derive what went wrong. By checking associated conditions and invariants
the processing of each automaton ensures the correct execution on the one hand
as well as facilitates the detection of faults. In this context faults are either
implementation bugs or caused by exogenous unforeseen events.
In the first place action analysis is applied offline on logged data to verify and
optimize the execution and statistically monitor and illustrate the performance
of individual actions but will be further extended operating online during plan-
traversal, -execution, planning and plan adaption.

6 RSL as Education and Research Platform

The design described in this paper proposes an easy and powerful architecture
and extends RoboCup Simulation League’s fundamental idea to a new level of
research and education by providing multiple points of entry for a number of
educational and research activities.
According to the following classification the proposed system can be used to
introduce the RoboCup Simulation League to a general non-professional public,
teach artificial intelligence and/or logic programming at various levels in schools
and at universities, use arbitrary RSL aspects in tutorials or courses and a num-
ber of other fields of application.



From the big picture towards detail (with increasing degree of difficulty) it is
thus possible to deal with

– high-level behaviour modeling
• by combining existing plans and defining new game-systems.
• by creating new plans with existing conditions and actions.
• by coding directly in/adapting generated Prolog clauses and relations.

– multi-level behaviour modeling (i.e. defining new EL actions and conditions
along with high-level modeling).

– different decision making, planning and learning algorithms.
– mere low-level issues (which of course can be subdivided further).

7 Future Work and Research

As our DML easily enables the implementation of other decision making, and
also planning and learning techniques, some future work will be the application of
machine learning algorithms for decision-making to compare different methods,
as well as teleo-reactive planning and learning (as suggested in [12]) adapted to
the needs of our version as a useful alternative to solely static plans.
Furthermore we will continue developing our automatic action analysis based
on automata which we believe will be useful for plan adaption, plan repair and
dynamic plans in general.
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