
Team Description of OPU hana 2D 2007

Tomoharu Nakashima and Yukio Shoji

Department of Computer Science and Intelligent Systems
Graduate School of Engineering

Osaka Prefecture University
Gakuen-cho 1-1, Sakai, Osaka, 599-8531

nakashi@cs.osakafu-u.ac.jp

shoji@ci.cs.osakafu-u.ac.jp

Abstract. This paper describes OPU hana 2D , our soccer team that
has been submitted to the qualification for the competition in the sim-
ulation league of RoboCup 2007. The basic skills such as dribble, pass,
and shot are improved by modifying the source code of the base team.
The main feature of OPU hana 2D is the introduction of neural networks
for dribbling. We call this neuro-dribble. In the neuro-dribble, the out-
put of neural network shows the dribble direction. A training data set
for the learning of the neural network is obtained from the obserbation
of the behaviour of other teams. The coach is also modified from the
base source codes so that a heterogeneous player type of each player is
determined by a rank-based weighted sum method.

1 Introduction

Team ‘hana’ has been participating in the RoboCup world competitions since
2002. Our first trial in 2002 ended in losing in all matches without marking any
scores. In the second trial in 2003, we survived the first elimination match before
losing in the second elimination. We also could proceed to the second round in
2004. As a base team, we used YowAI team in 2002, and have used UvA Trilearn
basic [1] since 2002. The team name was changed from ‘hana’ to ‘OPU hana 2D’
in the 2005 competition.

There are three main characteristic features in OPU hana 2D : Acquiring
dribbling skill by neural networks, team strategies obtained by evolutionary com-
putation, and the hetero-selection policy. We will explain each of them in the
following subsections.

2 Neuro-Dribble

2.1 Neural Network

In this paper we use neural networks for mimicking the behavior of a target
agent. We specifically focus on the dribble skill of the target agent. Thus the
task of the neural networks is to learn the sensor-action mapping of the target

2 T. Nakashima and Y. Shoji

x1

xi

xn

1

i

n nH

1 1

j k

nO

o1

ok

on O

w11

wn Hn

w11

wn On H

Fig. 1. Feed forward neural network.

agent. We use a standard three-layered feed-forward neural network as shown in
Fig. 1.

In Fig. 1, there are n units in the input layer, nH units in the hidden layer,
and nO units in the output layer. The symbols nnHn and nnOnH show the connec-
tion weight between the nH-th hidden unit and the n-th input unit and between
the nO-th output unit and the nH-th hidden unit, respectively. It is also assumed
that each unit in the hidden layer and the output layer has a threshold value
(θj for the hidden layer and θk for the output layer). The input-output mapping
of the neural network with an n-dimensional input vector in Fig. 1 is shown as
follows:

Input layer:
oi = xi, i = 1, 2, . . . , n, (1)

Hidden layer:

oj = f(netj) =
1

1 + exp(netj)
, j = 1, 2, . . . , nH, (2)

netj =
n∑

i

wjioi + θj , (3)

Output layer:

ok = f(netk) =
1

1 + exp(netk)
, k = 1, 2, . . . , nO, (4)

netk =
nH∑

j

wkjoj + θk, (5)

Error back-propagation algorithm is used to learn the weights of the neural
network. The next subsection describes the extraction of a set of training data
for the learning of the neural network.

OPU hana 2D 2007 3

2.2 Generating Training Data

The task of the neural network is to learn the sensor-action mapping of a target
agent. We use log files of soccer games that record the position and the velocity
of all objects in the soccer field. Soccer games are performed several times using
the target agent in order to obtain log files. Since the task in this paper is to
mimic the dribble behavior of the target agent, we extract necessary parts from
the whole log files so that the target agent is dribbling in the extracted parts of
the log files. This process is manually conducted. From the extracted part, we
generate a set of training patterns for the learning of the neural network.

2.3 Implementation

In this implementation, we use three neural networks as there are three available
actions for a soccer agent: kick, dash, and turn. The parameters of each action are
determined by the corresponding neural network. We refer to the three neural
network as kick-, dash-, and turn-neural network, respectively. In Fig. 2 we
illustrate the neural networks for the implementation.

Selection of NN

Kick NN

Turn NN

Dash NN

Visual

information

NN OutputInput

Kick Power

Kick Direction

Turn Direction

Dash Power

Fig. 2. Implementation.

It is assumed in this implementation that which action is taken according to
the agent’s situation. We show the procedure of Implementation I as follows:

[Procedure]

Step 1: Stop the ball by applying a negative force to the ball.
Step 2: Determine the dribble direction by the turn-neural network. Send a turn

command with the specified direction to the soccer server.
Step 3: If the ball is in front of the ball, determine the dash power by the dash-

neural network and send a dash command with the specified power to the
soccer server. Otherwise determine the kick power and the kick direction
by the kick-neural network and send a kick command with the specified
kick power and direction to the soccer server.

4 T. Nakashima and Y. Shoji

Step 4: Stop the dribble procedure if a pre-specified termination condition is
satisfied. Otherwise go to Step 3.

2.4 Experimental Settings

This section shows the computational experiments on the mimicking behavior
of an agent. In the computational experiments the task of the mimicking agent
is to capture the dribbling behavior of a target agent by using neural networks.
As a target agent a forward player of STEP is used. STEP won the RoboCup
world competition in 2004. The main characteristic feature of STEP is the im-
plementation of their sophisticated dribble skill.

We specify the learning rate of the neural networks as 0.1. We reduced the
amount of noise in the soccer field to zero in order not to cause any effect on
the performance of the neural networks. In the computational experiments all
the objects in the soccer field are observable to the mimicking agent. That is,
the mimicking agent has all the necessary information to perform the dribble
behavior.

The mimicking agent starts the dribble behavior if the ball is kickable and
the consequent action of the applied action rule is to dribble. We also specified
five termination conditions for the dribble as follows:

(1) There are any opponent agents that are very close to the mimicking agent,
(2) The ball is taken by an opponent player,
(3) The remaining stamina value of the mimicking agent is less than a prespec-

ified value,
(4) The position of the ball is in pre-specified subareas (e.g., in the penalty

area), and
(5) The mimicking agent has been away from the ball for more than 15 time

steps.

2.5 Performance Evaluation

In this subsection we show the experimental results of the neuro-dribble. Three
neural networks are trained using a set of training patterns extracted from the
game logs. We show the learning curve of the kick neural network in Fig. 3. Figure
3 shows the mean squared error of the kick neural network for the training data
set. We can see from Fig. 3 that the error of the kick neural network decreases
as the number of epochs increases.

Next we show a sequence of the mimicking agent in Fig. 4. From this figure,
we can see that the mimicking agent successfully acquire the dribble behavior of
the target agent.

OPU hana 2D 2007 5

The number of learning

M
ea
n
 s
q
u
ar
ed
 e
rr
o
r

0 100000 200000 300000

0.021

0.024

0.027

0.03

Fig. 3. Learning curve of the neural network.

3 Evolutionary Computation for Team Srategy

The main behavior of players are determined by action rules. The action rules
of the following type are used in this paper:

Rj : If Agent is in Area Aj and the nearest opponent is Bj

then the action is Cj , j = 1, 2, . . . , N,
(6)

where Rj is the rule index, Aj is the antecedent integer value, Bj is the an-
tecedent linguistic value, Cj is the consequent action, and N is the number of
action rules. Thus the construction of action rules is the crucial part in the de-
velopment of OPU hana 2D . In this section, we show an evolutionary approach
to the automatic determination of action rules.

3.1 Encoding

As described in the preious section, the action of the agents are specified by the
action rules in (6) when they keep the ball. Considering that the soccer field is
divided into 48 subfields and the position of the nearest opponent agent (i.e.,
it is near the agent or not near) is taken into account in the antecedent part
of the action rules, we can see that there are 48 × 2 = 96 action rules for each
player. In this paper, we apply our evolutionary method to ten soccer agent
excluding the goal keeper. Thus, the total number of action rules for a single
team is 96× 10 = 960. We use an integer string of length 960 to represent a rule
set of action rules for ten players. The task of our proposed evolutionary method
is then to evolve the integer strings of length 960 to obtain team strategies with
high performance. First 96 integer bits represent the set of action rules for the
player 1, the next 96 bits represents the set of action rules for the player 2, and
so on. We show in Fig.5 the first 96 bits of an integer string in our evolutionary

6 T. Nakashima and Y. Shoji

method. This figure shows an integer string for a single agent. In Fig. 5, the first
48 bits represents the action of an agent when the nearest opponent agent is
near the agent. On the other hand, the actions of the agent when the nearest
opponent agent is not near the agent are shown in the other 48 bits. The value
of each bit is an integer from the interval [1, 12]. This integer value corresponds
to the index number of 12 actions that are pre-specified manually. For example,
the integers 1 ∼ 3 represents three variations of dribble and the integers 4 ∼ 7
four variations of pass behavior and so on.

3.2 Evaluation of Integer Strings

Generally, the main idea of evolutionary methods is to exploit the information
of those individuals whose performance is highly evaluated. In this paper, we
evaluate the performance of bit strings through the results of soccer games.
Specifically, we use the scores of the soccer games as performance measure in
our evolutionary method. We first check the scored goals by the soccer teams
that are represented by the bit strings. The more goals a soccer team scores, the
higher the performance of the integer string for the soccer team is. When the
value of the goals is the same among multiple soccer teams, the lost goals are
used as a second performance measure. The soccer teams with lower lost goals
are evaluated as better teams. We do not consider the lost goals at all when the
goals are different between soccer teams to be evaluated.

3.3 Evolutionary Operation

We use one-point crossover, bit-change mutation, and ES-type selection as evo-
lutionary operations in our evolutionary method. The bit strings are modified
through crossover and mutation operations.

In the crossover operation, first we randomly select two integer strings. Then
latter part of both strings are exchanged with each other from a randomly se-
lected cut-point. Note that we do not consider any evaluation results when two
integer strings for the crossover operation are selected from the current popu-
lation. In the mutation operation, the value of each integer bit is replaced with
an integer value in the interval [1, 12] with a prespecified mutation probability.
It is possible that the replaced value is the same as the one before the mutation
operation.

Generation update is performed by using our ES-type selection in our method.
By iterating the crossover and the mutation operations, we produce the same
number of new integer strings as that of the current population. Then the best
half integer strings from the merged set of the current and the new strings are
chosen as the next generation. The selection is based on the match results as
described in Subsection 3.2. This generation update is similar to the (µ + λ)-
strategy of evolution strategy [2]. Note that the current strings are also evaluated
in this selection process. Thus, it is possible that a current integer string with
the best performance at the previous generation update is not selected in the

OPU hana 2D 2007 7

next generation update because the performance of the integer string in the next
performance evaluation is the worst among the merged strings.

To summarize, our proposed evolutionary method is written as follows:

[Procedure of the proposed evolutionary method]

Step 1: Initialization. A prespecified number of integer strings of length 960 are
generated by randomly assigning an integer value from the interval [1, 12]
for each bit.

Step 2: Generation of new integer strings. First randomly select two integer
strings from the current population. Then the one-point crossover and
the bit-change mutation operations are performed to generate new inte-
ger strings. This process is iterated until a prespecified number of new
bit strings are generated.

Step 3: Performance evaluation. The performance of both the current integer
strings and new integer strings generated by Step 2 is evaluated through
the results of soccer games. Note that the performance of current integer
strings is evaluated every generation because the game results are not
constant but different game by game.

Step 4: Generation update. From the merged set of the current integer strings
and new ones, select best integer strings according to the performance
evaluation in Step 3. The selected bit strings form the next generation.

Step 5: Termination of the procedure. If a prespecified termination conditions
are satisfied, stop the procedure. Otherwise go to Step 2.

4 Evolutionary Computation for Heterogeneous Players

4.1 Rank-Based Weighted Sum Method

For determining the type of heterogeneous players, we propose a rank-based
weighted sum method. Let us suppose that each player has a weight vector for
nine parameters that are changeable by selecting different heterogeneous types.
We first transform the values of each parameter into ranks so that the largest
value among all the heterogeneous types has the highest rank and the lowest
rank is assigned to the smallest value. Each agent evaluates the value of each
heterogeneous type by a weighted sum of the rank as follows:

Vi(j) =
9∑

k=1

Wik ×Rjk, i = 1, . . . , 10, j = 0, . . . , 6, (7)

where i is the index of agent, j is the index of the heterogeneous type, Vi(j) is
the value of the j-th heterogeneous type for the i-th agent, Wik is the weight of
the i-th player for the k-th parameter, and Rjk is the rank of the k-th parameter
of the j-th heterogeneous type.

The task of the evolutionary computation in this section is to optimize the
weight Wik for maximizing the competitive ability of the team.

8 T. Nakashima and Y. Shoji

4.2 Genetic Coding

We represent the weight Wik as a bit string in our evolutionary computation.
For simplicity, we only use integer values in the interval [−3, 3] as a value in the
bit strings. Since nine bits are necessary for representing the weights for nine
heterogeneous parameters for each player, the total length of the bit string for
ten players (excluding the goal keeper) is 90.

Generation update is performed in the same way as in the evolutionary com-
putation for team strategy in Section 3.

5 Conclusions

In this team description paper, we explained the three main characteristic fea-
tures of OPU hana 2D . One is Neuro-dribble where the task is to mimic the
dribble behavior of other teams by using neural networks. The second one is the
use of evolutionary computation for obtaining team strategies. The last one is the
use of evolutionary computation for acquring the coach strategy of hetero-type
selection.

References

1. UvA Trilearn, URL at http://staff.science.uva.nl/˜jellekok/robocup/index en.html
2. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University

Press, New York, NY (1996)

OPU hana 2D 2007 9

Fig. 4. Action sequence of the mimicking agent.

1 2 3 48 47

Actions when the nearest opponent player is near

49

50 51 96 95

Actions when the nearest opponent player is not near

Fig. 5. Integer string for a single agent.

