
YowAI2007 Team Description

Hiroki Asakawa1, Masafumi Ueda1, Yasuyuki Yamazaki2, and Ikuo Takeuchi1

1 Graduate School of Information Science and Technology,
The University of Tokyo,

Bunkyo, Tokyo 113-8656, Japan
ask@nue.ci.i.u-tokyo.ac.jp
2 Dept. of Computer Science,

The University of Electro-Communications,
Chofu, Tokyo 182-8585, Japan

Abstract. In this paper, we propose three techniques named short shout,
strategic shout and semi-reflection. Shouts are one of the means to achieve
cooperation human players use in real soccer. We have achieved short
term and reflective cooperation by using short shouts. Team plays are
cooperation which involve more than two players and some long term
tactics. To achieve team play, we developed a human-like agent commu-
nication “Strategic Shouts”. Strategic shouts can spread the team plays
objectives and adjust each agent’s priority of behavior, so that a sort of
strategic team play emerges. We implemented the semi-reflection func-
tion on RoboCup soccer agents. We developed agents which have the
ability of self-monitoring, quick self-correction and malfunction report
that demands programmers to do debugging. The semi-reflection func-
tion improved the agent performance and reduced developer’s burden of
agent development.

1 Introduction

The target of YowAI2007 is realizing “human-like agents”. A human-like agent is
an agent which makes its own action decision and cooperation with other agents
by a similar way as a human player takes in actual soccer. To achieve this goal,
we introduce three ways; short shout, strategic shout and semi-reflection.

2 Short Shout

In real human soccer, communications among players do not include precise
numbers. They use eye contact and short shouts that are bare minimum infor-
mation they need. For example one says “Agare” (which means “move forward”
in Japanese) when he wants to tell “Move forward the defense line”. One of the
reasons why they don’t say it fully is that it is impossible to say it in a flash,
and it is hard to understand in a wink. YowAI soccer agents use this short shout
not only for short tactical terms, but for sharing information without using any
cipher or data compression. By communicating player’s tactical move, a shout



gives the receiver a hint what he should do next. To send strategic information
by short shouts one has to abstract the situation relevant to the strategy. To
understand abstract information represented by a short shout the receiver has to
attach the meaning of the short shout to what situation he understands. There-
fore more intelligence is needed than communicating accurate numerical values.
Using short shouts in RCSS has been one of the answers to achieve team coop-
eration. YowAI agents cooperate with each other by “short shout” like humans.

2.1 Short Term Tactical Shout

We have achieved short term and reflective cooperation by using “short term
tactical shout”. A player can progress the tactical situation of the team, and
give the addressed player a hint to the tactical judgment and action selection.
The judgment or action selection is highly recommended. The following example
is a short term tactical shout.

2.2 Mae

When one controls the ball and there is a space in front of a particular teammate
to pass, he will say “Mae”. The actions the sender and the receiver (agent number
10) should do will be the following.

sender Calculate where to pass, kick the ball, and send message “(say "Mae 10")”.
receiver Run forward to prepare for receiving the pass.

“Mae” will bring the ball forward and make an advantage in attacking (Figure 1).

Fig. 1. Mae

2.3 Gotzan

When one has a wider and easier shooting range than the teammate which
controls the ball at that time, he will say “Gotzan”. The teammate that controls
the ball will pass the ball to the sender of “Gotzan” if he can’t shoot. “Gotzan”
will make better shoot chance and raise the goal rate (Figure 2).



Fig. 2. Gotzan

3 Strategic Shouts

3.1 Strategic Team Play

As shown in examples in sections 2.2 and 2.3, shouts did achieve cooperation
but were more like instantaneous pair wise combinations of related players than
team plays or team plans. The shout effects the members that are related to
the ball which are only two: the sender and one receiver. On the other hand,
team play is a part of team planning that includes not only combination chains
but also formationing. Team plays can effect not only the members near the ball
but also the members far from the ball. These make team plays an advanced
cooperation than those cooperation achieved by short shouts.

Strategic team play is a team play whose target is to make an advanta-
geous strategic situation. To achieve strategic team play we developed “strategic
shout”.

3.2 Strategic Shourts

There are two important points in strategic shouts; a strategic shout effects
more than one teammates, and one can use short shouts during the combination
chains in strategic team play. We have already developed combination plays by
short shouts and therefore we use strategic shouts to spread the target of the
team play to some or entire teammates. The teammates involved in the team
play will make the best decision to success the team play moves. The following
section describes an example of strategic shouts.

3.3 Back2Toward

The target of a strategic shout named “Back2Toward” is to break through the
opponent’s defense line. Against top teams high skill defenses, an advanced of-
fense skill has been needed. One answer to this is Back2Toward. By passing the



ball back once to a player that can see the opponent’s defense line exactly than
the passer, it will make it easier to break through the opponent’s defense line.
The moves related to the ball are as follows.

1. If the ball controller thinks that it is hard to carry the ball forward and
cannot find a good pass course, he will say “Back2” (Figure 3 -1).

2. Let a teammate be “teammate A”. If teammate A thinks that there is a
pass course from the ball controller to him and there is a chance to pass the
ball to a teammate more forward than where the ball is located, he will say
“Toward N”. N is the number of a particular teammate he thinks the best
teammate to pass the ball to at that time.

3. The ball controller will pass the ball to teammate A.
During the pass, teammate N will move to make a clear space in front of
him (Figure 3 -2).

4. After teammate A gets the ball, he will first check if he can pass it in front
of the player N . If he can, he will pass it to him. If cannot, he has to find a
better teammate to pass.

5. When passing the sender might use short shouts such as “Mae”(Figure 3 -3).

During the movements above, other teammates have to help the cooperation
if they can. They may get theirselves marked by opponents on purpose to make
the pass course clear, or make clear spaces in front of them to be deputies of
the teammate N (Figure 4). These movements of teammates will push up the
success rate of Back2Toward and make it not a chain of combination but a
strategic team play.



Fig. 3. Back2Toward; Only players related to ball

4 Semi-reflection

4.1 Reflection

A reflection is one of effective ways to construct flexible systems on dynamic envi-
ronments. Reflection is a mechanism that can sense self status and change itself.
A system that has a reflection mechanism can modify its function and reform
itself by referencing and modifying inside information and coded instructions.

We propose semi-reflection in order to apply the concept of reflection to
RoboCup Soccer. We build a system which has the ability of self-monitoring,
quick self-correction and malfunction report.

4.2 Semi-reflection

Under semi-reflection, we don’t change program itself which triggered malfunc-
tions but detect suspicious actions and unusual behavior of agents and do quick
self-correction. A semi-reflection system logs the information of action modifica-
tions and environment when it works. Developers can modify the program code



Fig. 4. Non related players’ movement from Figure 3 -2

to see that logs. Because a modification is quick and impromptu, we call it semi-
reflection. On complex environment, it is hard to construct reflection system
that modifies program codes in order to respond to unexpected circumstances.
Since an agent must respond quickly to urgent problem, it choose an action from
simple and reliable alternative actions.

4.3 Self-monitoring agents

On our study, we implement malfunction detection and problem solving function
as a self-monitoring agent. Figure 5 shows self-monitoring agent and main agent.
Self-monitoring agent and main agent are in the same agent but they act as
a different agent. That means self-monitoring agent sees itself from the third
person.

Self-monitoring agent gathers information about the main agent’s world model,
logs of actions and history of objectives. It evaluates the world model, actions
and objectives of the main agent. When it detects a malfunction, it commands
modification of the world model and alternative action to the main agent. At
the same time, it logs that information and informs it to the developer.

4.4 Observation of main agent

Our previous version of YowAI had following problems.

– Malfunctions on unexpected occasions.
– Meaningless repeat of same action
– Inconsistent actions

Those problems caused by lack of meta-cognitions of agent. For example, an
agent doesn’t have cognition of what it knows and what it doesn’t know or what
its objective is and why it does current action. To solve this problem, we make
self-monitoring agent that observes agent’s world model, actions and objectives.



Main Agent

World Model
Rule

Make a objective

Planning

Supervisor

Interface

Execute

Commands

Interrupt

Interface

Self-monitoring Agent

Soccer Agent

History of World Model

History of Objectives

History of Commands

Evaluator

Detect

Malfunctions

Quick

correction
Detail Logs

DeveloperModify, Adjust

Malfunction notification

Fig. 5. The framework of semi-reflection

4.5 Modification of action

The main agent makes a plan and executes a command to achieve a plan on
each cycle. An agent make a plan based on its world model, but sometimes it
fail to choose an action or a plan because of incomplete information and dynamic
environment. Especially because an action needs more accurate information of
environment, it is hard to choose a appropriate action. We focused on following
actions that we inspect.

– Apparently unnatural actions or plans for soccer rules.
– Meaningless repeats of same action
– Inconsistent changing of plan.

It may be feasible to prevent those problems by main agent planning. But
when you edit your huge agent program codes, it costs a large amount of labor
and it introduces greater complexity into structure of agent. Consequently, when
you split a self-monitoring function as module, your program is more clear and
easy to maintain. Besides, an agent can inspect problems more objectively be-
cause self-monitoring agent evaluates using different logic from the main agent.

Self-monitoring agent detects malfunctions through checking a history of
main agent’s actions. A history of actions is a log of executed actions and



agent’s plans. When self-monitoring agent detects malfunctions, it interrupts
the main agent’s behavior decision and force to change its actions to alternative
action which self-monitoring agent chose. Described above, self-monitoring agent
doesn’t modify program code itself, but it commands a specific action.

4.6 Detection of malfunctions

Self-monitoring agent detect malfunctions using validness which is calculated by
evaluating whether main agent’s action is feasible for current plan and whether
its plan is appropriate for soccer rule. We introduced requirement to define
the minimum requirement for main agent’s actions and plans. Self-monitoring
agent calculates validness by comparing agent’s actions and plans to require-
ment. When validness is 0, that is assumed malfunctions. More and more close
to requirement, it is feasible action and plan.

We show an example to calculate validness of pass objective. Minimum re-
quirements of pass are following.

Rule the target of pass is not over offside line.
Knowledge the target of pass is in the soccer field.
Strategy the target of pass is not too close to self position (not in its kickable

area).

When a pass doesn’t fulfill above requirements, validness is 0. The require-
ment for pass is following.

requirement 1 distance between the position of ball and the target of pass is
about 1/3 of the soccer field.

requirement 2 The direction of target of pass is the direction of opponent goal.

We calculate validness by comparing above requirements and main agent’s
actions. For example, when a agent which has a ball and it is going to pass to
a teammate which is at backside of the passer, validness is calculated following.
We defined the distance between the position of ball and the target of pass as
25.5m, the angle of between the direction of the target of pass and the direction
of opponent goal as 170 degrees, and BestPassDist as 17.5m (1/3 of the soccer
field).

BestPassDist = 17.5
MaxPassDir = 180.0

DiffDist = min(25.0, 2 × BestPassDist) − BestPassDist
Requirement = 100 × (1 − DiffDist/BestPassDist)

= 57
Requirement = 100 × (1 − min(170.0, MaxPassDir)/MaxPassDir)

= 6



Validness = (57 + 6)/2
= 32

4.7 Detection of unusualness repeats

Not every repeat is malfunction. Dribbles are repeats of kicks and dashes. De-
scribed in the above section, validness is calculated by comparing requirements
and actual actions. When a single low validness action is detected, you can’t
always assume it as malfunction. But when actions which have low validness are
repeated, you can assume them as malfunctions. For example, when an agent is
going to pass, it is natural for that agent to kick the ball to near itself in order to
bring the ball to best position to pass. But if that cycle is repeated, that agent
can’t pass the ball forever and can’t achieve its objective.

In order to detect repeats of action which has low validness, self-monitoring
agent logs action which has low validness. Self-monitoring agent evaluates va-
lidity of action considering the history of action which has low validness. We
used three types of history; short term, midterm and long term. Self-monitoring
agent can detect malfunctions which repeat in variety of periods. We defined
short term as 15 cycles, midterm as 300 cycles and long term as 6000 cycles.

4.8 Detection of inconsistent actions

When an agent’s objective varies with each cycle and it goes hither and thither
without being able to achieve its objective, we assume it as inconsistent actions.
It is inevitable to a certain degree for an agent to change its objective in dynamic
environment and with incomplete information. Consequently, using history of
objectives, we detect inconsistent actions as following.

– Objective itself is changed many times in short term.
– The direction of target of objective is changed many times.

For example, the change of objective itself is a occasion when an agent chose
a shot in a certain cycle but in the next cycle it chose dribble, and in the next
cycle it chose pass. Similarly, changing the direction of target of objective is a
occasion when an agent chose a dribble forward in a certain cycle but in the
next cycle it chose dribble backward, and in the next cycle it chose dribble right
hand.

4.9 Quick self-correction

We used simple alternative actions and plans. When an agent is going to do
invalid actions, self-monitoring agent modified them to more appropriate prede-
fined actions or plans.

Predefined actions and plans are not the best actions and plans, but when
an agent is going to be wrong, it is more important to make an agent to choose



another action. Because quick self-correction is ad hoc modification, it is better
to choose simple and reasonable actions in short computational time than to use
more power to look for optimum actions.

5 Summary

In this paper, we introduced our thoughts for RoboCup Soccer agent develop-
ment. We aims to realize more human-like agent on RoboCup Soccer.

We use human-like agent communication to achieve team plays. When agents
use human-like communications, they can receive hint of requirements and de-
cisions by teammates. We developed“ Strategic Shouts”as a human-like agent
communication to achieve team plays. By using strategic shouts, agents can
share the objectives of team plays and make decision on what to do to help
success team plays.

We introduce the concept of semi-reflection to RoboCup Soccer. An agent
which uses semi-reflection can work more stably on unexpected occasions. We
split an agent to main agent and self-monitoring agent so that self-monitoring
agent can observe its situation more objectively.

Currently we are interested in team play without any communication. Hu-
mans can do team plays thinking other players’ attentions. Humans see other
players actions and read other players’ attentions. We will construct other play-
ers’ models in an agent and realize non-communication team plays.


