
KickOffTUG - Team Description Paper 2009

Stephan Gspandl, Werner Arnus, Julia Gebetsberger, Gerwin Gsenger,
Andreas Hechenblaickner, Michael Reip, Christian Wagner, Máté Wolfram,

Christoph Zehentner

Institute for Software Technology, Graz University of Technology, Inffeldgasse 16B/II
8010 Graz, Austria,

sgspandl@ist.tugraz.at,
http://kickofftug.tugraz.at

Abstract. In the past months KickOffTUG developed its agent code in
many directions. On an abstract level we focus on developing methodolo-
gies to define and adapt behaviour of agents or robots. We thus propose
a system to transform tactics graphs from books on soccer strategies
or tablet-pcs and digital whiteboards into behavioural plans as intuitive
and easy as sketching on paper.
Furthermore our research comprises new and optimized ways of diagnos-
ing the behaviour and execution of agents or robots. Costs of collabora-
tion, debugging and testing should be minimized by enhancing usability
and motivating all members to actively participate. Our Diagnosis Tool
makes it even possible to evaluate adaptions offline (i.e. without having
to run a game).
Concerning the agents’ skills, we have been researching into ways of im-
proving dribbling skills by identifying appropriate features as well as po-
sitioning and marking methods. Latter shows empiric results over several
algorithms.

1 Automatic Derivation of Behavioural Models

1.1 Introduction

One important task in the RoboCup soccer league is to build up soccer domain-
knowledge. Most teams of the RoboCup soccer leagues are engaged in adapting
soccer knowledge for their robots. Because soccer is a well-covered domain, there
exists a broad variety of books and strategic knowledge from soccer experts (like
[1] or [2]). Teams use such knowledge to develop their agents’ behaviour. This is
mostly done by a manual transformation into specific plans or algorithms.
In our view, adapting the agents’ behaviour should be as easy and fast as scan-
ning diagrams from expert books or scribbling circles and lines onto a piece
of paper or a tablet-pc. We therefore propose a system for an easy translation
of soccer strategic graphs to plans defining the agents’ roles and abstract be-
haviours.
The input to the system is a graph (a scan) or a seqence of strokes (from a
tablet-pc or a digital whiteboard) depicting an agent’s behaviour in a concrete



situation. Our approach is based on several transformations and models of rep-
resentation. In the first stage we recognize the strategic graph and translate it
to a spatial-temporal representation of the described situation. This model typi-
cally contains a set of circles representing the own, the opposing players and the
ball and a set of different arrows standing for the actions to be performed by
the players, respectively. By using a domain-model the spatial-temporal model
is then transformed into a domain-specific situation model. This model in turn
comprises a set of literals describing the situation given by the strategy graph,
the actions which are applied to this situation and a set of conditions describing
the situation after application of the actions. A combination of such strategic
models creates an overall model of the agents’ behaviour.
Fig. 1 sketches this process. As this is work in progress we will discuss only the
first approach in this paper.

Fig. 1. The process of automatically deriving a behavioural model from several tactics
graphs.

1.2 First Approach

Our first approach is based on the decision-making system in the 2D RoboCup
Simulation League team KickOffTUG and a first version of a scan-recognition
module built in Matlab. We are using an adaption of T-R-Programs (see [3])



combined with a STRIPS notation (see [4]) to generate plan trees which define
the agents’ behaviour (see [5], [6] and [7]). At the moment these plans are created
by hand using expert knowledge. Simply spoken, a plan tree consists of action
nodes, each path in this representation corresponds to a goal in the T-R-notation
and the tree is traversed in a depth-like way to find a node whose postconditions
(or effects) are false (to denote that the outcome of this action has not yet been
fulfilled) and the corresponding preconditions are met (i.e. the action is indeed
executable). Invariants help to maintain deliberativity of a decision as an action
is executed as long as the invariant remains satisfied. In order for the agent to
be reactive, the tree is traversed from the root otherwise (thus, the whole search
space is again examined).

Fig. 2. An example for a tactics graphs from [1].

Input to the recognition engine is a tactics graph from [1] like the example
shown in Fig. 2 which results in a simple domain-specific spatial-temporal model
with players and the ball recognized and annotated with field positions as well as
actions to be performed. This transformation applied to the example is shown in
Fig. 3. The interpretation step is based on a knowledge domain derived from the
set of conditions used to evaluate the environment (the world state) the agent
is faced with. Applying this domain yields a qualitative description which is
employed to build tree plans described before as they provide a predicate basis
for pre-, postconditions and invariants. Fig. 4 yields the resulting plan of the
transformation process for the given example.

In the simplest case this qualitative model will be directly inserted into an
overall plan tree by attaching it as sibling. As each situation broadens the tree
further, this will probably turn out to be very inefficient. Therefore, techniques
to deepen the tree have to be implemented. One approach would be binary
ramification, i.e. using common predicates as anchor points to ramify the tree.



Fig. 3. The recognized graph is
transformed into a simple spatial-
temporal representation.

Fig. 4. The resulting plan.

2 Diagnosis Environment

2.1 Introduction

Our GUI for diagnosing the agents’ behaviour and execution (Diagnosis Tool) has
recently experienced several major improvements, including a new datasource
management system and advanced methods for visualizing all kinds of data
associated with the agent’s decision process. Aim of this project was to improve
this tool’s usability to motivate all team members to actively participate in our
analysis and debugging process.

2.2 Diagnosis Features

Visualizations The window for visualizing the agents’ world states after each
game has been enhanced to include all kinds of overlapping visualizations that
can be individually written, integrated and activated. Several convenience meth-
ods are available to ease this process and to offer the developer a mighty tool for
individual debugging, especially if compared to simple system output or logging.
Any information presented in the visualization frame is such a visualization, from
the world state as we see it through a soccer monitor to Delaunay and Voronoi
diagrams or calculations for higher level actions such as passing, dribbling and
positioning, to name a few (see Fig. 5).

Another useful and often interesting feature is the mirrored world state that
allows us to generate all visualization overlays based on the opposing team. That
way, we can compare their actual behaviour to the calculations our agents would
have come up with.



Fig. 5. Visualization Frame

Fig. 6. Formalizations and Deci-
sions

Formalizations and Decisions Whenever the appropriate logging level is
enabled, our agents record their decisions and formalizations in every cycle.
After the game, this information is written to logfiles that can be interpreted
and displayed by the Diagnosis Tool (see Fig. 6).
If such information isn’t available or needs recalculation due to changes in the
agent’s plans, the missing (or new) information can always be recalculated, by
invoking a passive instance of an agent from within the Diagnosis Tool to request
new decisions (see Fig. 7).

Fig. 7. Decision-Making Recalculation



Log Data, Actions, Statistics In addition to the aforementioned features,
the Diagnosis Tool offers a large amount of various views to inform the devel-
oper about exact positioning, agent actions or match statistics. The available
frames are not limited to a certain set, but the developer is rather encouraged to
contribute new views to the system, that can be added as easily as new visual-
izations for the visualization frame. The data that’s necessary for these views is
managed by the Diagnosis Tool’s datasource management system, as described
in chapter 2.3.

2.3 Datasource Management

Since our team uses a farm of simulation servers for tournaments to evaluate our
agents’ skills, all the diagnosis information written during and after simulated
matches is stored on these servers and can be accessed online. To enable the
developer to quickly overlook and access this huge amount of data, the Diagnosis
Tool is able to fetch data from various datasources, including our servers of
course, and present it to the developer in a simplified form. Fig. 8 shows how
the user can choose among various datasources and open corresponding diagnosis
elements.

Fig. 8. Datasource View



To enable the user to analyze multiple games at the same time, open matches
are presented in a tabbed view (as shown in Fig. 9).

Fig. 9. Tabbed Browsing

2.4 Benefits

As mentioned before, the main goal of the Diagnosis Tool is to ease the debug-
ging process and therefore motivate all team members to actively participate in
it. However, it’s also helpful in terms of team-internal communication of detected
issues. Since all team members are working on a central repository of matches
and associated logged data, issues can be communicated by simply pointing to
a simulated match and a certain cycle, instead of having to send logged data in
large files. Also, issues can be easily stored for later reference.
The large amount of available features, especially the visualization frame, of-
fers the developer a way to quickly pinpoint errors or try new code without
even having to actually start an agent. Deployment times of new features are
dramatically reduced while increasing the quality of the resulting source.

3 Dribbling: Skill of Handling the Ball

Dribbling is an action, where the player runs with the ball without loosing it.
Therefore he should be able to move into various directions and with different



kinds of speed. These features have been derived empirically and are subject of
discussion in the next paragraphs. Fig. 10 shows an example of applying concrete
parameters to the dribbling algorithm.

3.1 Speeds

Three different dribbling speeds are implemented. These are accomplished by
calculating the velocity appropriatly.

1. Normal: The player kicks the ball with the maximum velocity so that he is
able to reach the ball each cycle. Thus, it is possible to change the direction
each cycle to avoid opponents.

2. Fast: Fast dribbling is used to enable the agent to attack opponents faster.
Therefore the ball is kicked in a way that the velocity is equal to the maximal
acceleration of the player after some cycles. So the player is not able to reach
the ball each cycle which makes the move more risky.

3. Slow: When the player uses slow dribbling he has to save stamina or wait
until his colleagues are positioned to be able to execute a pass. He accelerates
the ball with the half of the velocity of the normal dribbling speed.

3.2 Directions

The dribble directions are given as absolute coordinates on the soccer field. The
player should be able to run to a strategic position, but also to avoid opponents.
Therefore three different dribbling direction were implemented:

1. Position to go: The player should move primarily to this position which
could be used to implement different soccer tactics. For instance, if the player
is inside the offensive area, he should move, if possible, to the opponent’s
goal or the corner.

2. Dodge direction: The dodge direction is a calculated position where the
player should move when opponents are near but not very near. This direc-
tion is used to avoid them as early as possible. The direction is calculated
with aid of the widest angle between the near opponents.

3. Wide dodge direction: This direction is used, when the opponents are
very near and the player has to dodge with a larger angle than the normal
dodge angle. That angle could be inside the full range of 0◦ to 360◦.

4 Comparing Several Positioning and Marking
Methodologies

4.1 Introduction

Handling the ball while in ball possession or to intercept the ball are important
skills in (human or digital) soccer, but most of the time a player takes only part



Fig. 10. Slow dribbling over time - the player is painted every tenth cycle avoiding the
opponents in blue.

in a passive way without having the ball. During this periods, its main task is to
run to a good position an the field depending on the current situation (offensive
or defensive play) and to keep the team formation.
Depending on the current ball position and the role of the player, a position
on the field can be calculated known as the players home position or strategic
position.
While some simple algorithms to calculate these positions are presented in [8]
and [9], a more flexible implementation using Delaunay triangulation and linear
interpolation was presented in [10].

4.2 Offensive Positioning

To improve position selection during offensive situations the player should find
the best position within its reachable area that allows him to receive passes and
gives him a good scoring probability.
Based on [11] an algorithm considering the following criteria was implemented:

– Keep formation given by the strategic position.
– Maximize distance to opponents.
– There should be a free way to the opponents goal.
– Direct pass should be possible.
– Keep near offside line.
– Avoid positions near the outlines.

The weights of each criterion depends on the players role (striker, midfielder,
defender), the current play mode and the position of the ball.

4.3 Defensive Positioning and Opponent Assignment

To successful defend opponents attacks each attacking player must be marked by
one defender. To avoid single opponents to be addressed by more than one player
or to leave an attacker unattended, a collaborative assignment of attackers to



defenders must be negotiated in the defending team.
To solve this problem, an algorithm presented in [12] that minimizes the costs (a
weighted function of the attackers threatness, the distance to the attacker and
the distance to the strategic position), of marking all attackers was implemented,
giving a good assignment for a man-to-man marking defense strategy.
As in modern soccer zonal marking is very successful, a second algorithm selects
the attacker to take care of based on the zones around each players strategic
position.

4.4 Experimental Results

All implemented algorithms are compared in a set of matches against other teams
released binaries from 2008 RoboCup competitions.
Table 1 shows the strong advantage of the Delaunay triangulation based strategic
positioning algorithm against the simple one presented by UvA.

Implementation Goal difference Ball possession

UvA [8] -5,07 59,08 %
Delaunay triangulation [10] -2,71 57,86 %
Delaunay with offensive positioning -2,02 59,56 %

Table 1. Comparision of different positioning implementations.

For defensive situations two opponent assignment algorithms explained in the
previous section are compared against a simple one that assigns each defender
the attacker with the shortest distance and does not avoid double assignments.
Best results are achieved by a zonal marking defensive strategy [13].

Implementation Goal difference Ball possession

NearestEnemyAssignment -3,99 56,85 %
TeamCostEnemyAssignment -3,25 57,82 %
ZonalMarkingEnemyAssignment -2,71 57,86 %

Table 2. Comparison of different opponent assignment implementations.

References

1. Bangsbo, J., Peitersen, B.: Offensiv Spielen. Verlag Hovedland (2000)
2. Lucchesi, M.: Coaching the 3-4-1-2 and 4-2-3-1. Reedswain Publishing (2002)
3. Nilsson, N.J.: Teleo-reactive programs for agent control. Journal of Artificial

Intelligence Research 1 (1994) 139–158



4. Nilsson, N.J., Fikes, R.E.: Strips: A new approach to the application of theorem
proving to problem solving. Artifical Intelligence 2(3-4) (1971) 189–208

5. Gspandl, S.: KickOffTUG - eine KI-Lehr- und Forschungsplattform. Master’s
thesis, Graz University of Technology, Graz, Austria (October 2007)

6. Reip, M.: KickOffTUG - Multiagentensystem der RoboCup Simulation League.
Master’s thesis, Graz University of Technology, Graz, Austria (October 2007)

7. Gspandl, S., Monichi, D., Reip, M., Steinbauer, G., Wolfram, M., Zehentner, C.:
Kickofftug - team description paper 2007. In: Proceedings of RoboCup 2007: Robot
Soccer World Cup XI. (2007) beiliegend.

8. de Boer, R., Kok, J.: The incremental development of a synthetic multi-agent
system: The uva trilearn 2001 robotic soccer simulation team. Masterarbeit, Uni-
versity of Amsterdam (2002)

9. Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coor-
dinating a team of homogeneous agents. In: Springer’s Lecture Notes in Artificial
Intelligence, Vol. 2103, Springer-Verlag (2001) 175–197

10. Akiyama, H.: HELIOS2007 Team Description (2007)
11. Razykov, S., Kyrylov, V.: While the ball in the digital soccer is rolling, where

the non-player characters should go if the team is attacking? In: Future Play ’06:
Proceedings of the 2006 conference on Future Play. (2006)

12. Kyrylov, V., Hou, E.: While the ball in the digital soccer is rolling, where the
non-player characters should go in a defensive situation? In: Future Play ’07:
Proceedings of the 2007 conference on Future Play, ACM (2007) 90–96

13. Gspandl, S., Monichi, D., Reip, M., Schubert, M., Wolfram, M., Zehentner, C.:
Developing a general framework for artificial intelligence. Third Austrian RoboCup
Workshop (2008)


