
OxBlue2009 (2D) Team Description

Jie Ma

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

jie.ma@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk

Abstract. OxBlue2009 (2D) is a robot football team for RoboCup 2D
simulation. In this paper, the decision structure of our team will be
presented. Under this structure the fundamental cooperative behaviour
formation is briefly presented. It is accompanied by a instance-based
learning method that approximates opponent formation functions. As
to the high-level cooperation, PSP (Policy Search Planning) that we
proposed in 2008 is reviewed. Policy Search is used to find an optimal
policy for selecting plans from a plan pool; it extends an existing gradient-
search method (GPOMDP) to a MAS domain.

1 Introduction

OxBlue2009 (2D) is a robot football team for RoboCup 2D simulation and it
derives from Apollo05(2D). Jie was the team leader of Apollo and lead the team
won the champion of China RoboCup in 2004 and 2nd place of US RoboCup
Open as well as 7th place of RoboCup in 2005. Since 2006 OxBlue has been
developed in Oxford University computing laboratory and we were top 8 team
in RoboCup 2008. OxBlue2009 is implemented in C++ and it is developed based
on the released code of Helios2008 and the corresponding base library librcsc,
which are developed by HELIOS team [1].

The main purpose of our development of OxBlue2009 is to verify and promote
our research on multi-agent systems (MAS). In particular, as cooperative skills
essentially differentiate MASs from single-agent intelligence, we are interested
in applying Machine Learning methods to yield cooperative behaviours in MAS
scenarios. HELIOS was ranked 3rd in RoboCup 2008 and with their decent
released code we can concentrate our efforts on the cooperative learning scenarios
rather than maintaining low-level models.

In §2, a layered decision architecture that is used in OxBlue2009 is pre-
sented. Under this structure the fundamental cooperative behaviour formation
is briefly presented §3, and how to modeling opponents’ formation functions
using instance-based learning is also discussed. In regarding to the high-level co-
operation, our novel method PSP (Policy Search Planning) and its applications
in RoboCup are briefly reviewed in §4. It is followed by the conclusion in §5.

http://www.comlab.ox.ac.uk


2 Decision Architecture

In order to reduce the learning space of cooperative skills, most of today’s
MASs tend to adopt vertical layered architectures [2, 3]. This architecture is
also adopted in OxBlue2009. In RoboCup soccer, pure reaction is required on
some occasions, such as in a corner kick situation, where most agents don’t need
to make complicated decisions but to move to stationary positions. In other
words, before world models are fully generated, actions will be directly sent. In
more sophisticated decisions, however, such as stopping the ball from losing it,
then although world models have been created emergency actions will be directly
sent to the executor without comparing different skills in the arbitrator. This is
in-between decisions. In most cases, decisions are pure deliberation – local issues
such as interception and dribbling can be solved in the individual skill module,
while global problems including formation and team strategies can be dealt with
by advanced methods such as planning. Our decision structure is given in Figure
1.

 

World Model

Sensors

Individual Skills

Executor

Arbitrator

Reaction

Partial Cooperation

Global Cooperation

Deliberation

Environment

Communication

Fig. 1. Decision Architecture of OxBlue2009

3 Formation

In football games, formation is the term used to describe how players are po-
sitioned in the field. It plays a critical role both in human and robot football
games.



Fig. 2. 4-3-3 Formation

A Situation Based Strategic Positioning (SBSP) method has been proposed
by a world champion team, FC Portugal 2000 [4]. Similar approaches have also
been employed in many other successful teams including another world cham-
pion, UVA 2003 [5]. Recently Akiyama proposed a novel agent positioning mech-
anism using Delaunay Triangulation; due to the space limitation details can be
found in [6]. In OxBlue2009 we use Delaunay Triangulation (which is imple-
mented by librcsc) to generate our players’ formation and use SBSP to approx-
imate the formation of other teams.

Basically, SBSP establishes a ball-based function Formation (P ball) to cal-
culate formation positions from a local perspective. Before a game, each agent
is granted a unique role, which determines a strategic home position, an activ-
ity limitation and a ball attraction factor. During a game, dynamic formation
points are calculated by simple vector operations. Every agent is just performing
its own role without taking teammates into account, thus this cooperation is self-
interested. Such cooperation is essentially embodied in predefined roles, which
leads to distribution of agents in appropriate positions. The SBSP algorithm
framework is shown in Algorithm 1.

3.1 Instance-based learning and Opponent Modelling

Since a team formation is highly dependent on the position of the ball, instance-
based learning can be used in predicting the formation pattern of each opponent.
Such learning is well known as opponent modelling, which is particularly useful
in adversarial multi-agent systems, such as combat simulations [7] and the robot
sheepdog [8, 9]. Learning opponent formation models is useful in RoboCup simu-
lation because an agent’s positions are only partially observable, so such models
can help an agent to predict the positions of the other agents that cannot be
seen.

Three-layered backward propagation networks (BPNs) are used to approxi-
mate individual agents’ movements: two units in the input layer, which is the
vector of the ball; two units that determine position in the output layer, plus a
3-unit hidden layer. All the units employ sigmoid activation functions. During a



Algorithm 1 SBSP algorithm
Formation (P ball)

P = P 0 + r × P ball

{P 0 and r are pre-defined home position and ball-attraction factor respectively}
if possible offside then

P .x = P ball.x

end if
if P .x > x. max then

P .x = x. max {the limitation of x}
end if
if P .x < x. min then

P .x = x. min {the limitation of x}
end if
return P

game, the coach builds 11 backward propagation networks for all the opponents,
which are trained using online position information.

In our experiment, each opponent agent generates 1000 position samples per
100 seconds for instance-based learning(see Fig.3). The samples are collected
in play-on mode only, and unexpected position changes (e.g. caused by move
command) are excluded. After 8 epochs, all the 11 agent models converge, having
average errors less than 0.048. Interestingly, with an average error of 0.0156, it is
much easier to predict the position of opponent agent 1 (the goalie). The reason
is clear: the goalie stays only in a very small area during the game.

The overall average error is also calculated: after 8 epochs, it converges to
0.036. This is a normalised value, which equals to around 5 metres in the real
field. The result is satisfactory: according to the noise model, even the informa-
tion from sensors will contain noise errors equivalent to 1 metre. The experiment
is processed using our legacy OxBlueCoach08 and currently there still remains
some work to do to embed it into OxBlueCoach09 because the current librcsc
only supports single-thread computation, but hopefully we can use this tech-
nique in RoboCup 2009 in Graz. We have to admit that the learning result may
be not precise for every cycle but it can be very helpful to predict the opponents’
position and identify unnumbered opponent players.

4 Policy Search Planning (PSP)

In complex MASs, particularly in a system with hybrid individual architectures,
planning plays a different role compared with that in traditional domains. In
a simplified single-agent system, planning is used to directly find a goal. In
dynamic MASs, however, the goal is usually difficult to achieve, or sometimes it
is difficult to describe the goal. In addition, the traditional action effects will lose
their original meaning: environmental state can also be changed by other agents
at the same time, or sometimes it continually varies even without any actions.



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 e
rr

or

Number of epochs

 

 
Agent 1
Agent 2
Agent 3
Agent 4

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 e
rr

or

Number of epochs

 

 
Agent 5
Agent 6
Agent 7
Agent 8

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 e
rr

or

Number of epochs

 

 
Agent 9
Agent 10
Agent 11

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 e
rr

or

Number of epochs

 

 
Overall

Fig. 3. Opponent Formation Learning Process

C
B

A

P1

Opp
P2

Fig. 4. A Planning scenario
in RoboCup

For example, consider a scenario from
RoboCup as shown in Figure 4: P1 and P2 are two
team members with P1 controlling ball, Opp is an
opponent, and they are all located in different ar-
eas. A traditional planner might construct a plan
in which P2 dashes to point A and then P1 passes
the ball. However, in this situation, points B and
C are also potential target points for P2. Even
from a human’s perspective it is difficult to say
which plan is better before fully knowing the op-
ponent’s strategies. Therefore, in multi-agent sys-
tems planning tends to be regarded as a “tutor”
to increase cooperative behaviours so as to im-
prove overall system performance. Expert knowl-
edge can be embodied in such planning, without
which agents mainly execute individual skills.

We propose a novel method called Policy
Search Planning (PSP) for POMDPs, which is essentially a centralised plan-



ner for distributed actions. In the example of Figure 4, PSP can try to find the
most appropriate policy for selecting a plan even without the opponent’s model.
Specifically, it can represent a number of complex cooperative tactics in the form
of plans. Plans are shared by all the agents in advance, and policy search is used
to find the optimal policy in choosing these plans. As a plan is not designed to
find the goal directly but to define cooperative knowledge, the style of it is not
very critical.

Fig. 5. Learning Process in PSP algorithm

In the PSP algorithm, a plan is actually a cooperative strategy. We can
define plenty of offline plans to establish a plan pool, which is essentially an
expert knowledge database. If the external state satisfies the precondition of a
plan, the plan will be called an active plan. At time t, if there is only one active
plan, it will be marked as the running plan and actions will be executed stage
by stage. However, along with the growth of the plan pool, multiple active plans
may appear at the same time.

Previous solutions chose a plan randomly, which is clearly a decision without
intelligence. Q-learning is apparently a wiser approach, but unfortunately Q-
learning is difficult to adopt in generalised decision architectures because all the
plans cannot guarantee activation. In this paper we employ another reinforce-
ment learning method, policy search, to overcome this difficulty. The learning
framework is illustrated in Figure 5. Due to the space limitation, we are unable
to extend the details of PSP method, more details can be found in [12].

The performance comparison of OxBlue2009 with and without PSP is shown
in Fig.4. The average goal difference(AGD) is used as the quantitative perfor-
mance criteria and the each statistical result is measured based on 10 games.
We use the released binaries of RobCup 2008 teams as our opponents and em-
ploy about 50 plans in the plan pool and these plans have been refined by the
PSP based on OxBlue2007. The Fig.4 shows PSP increases the performance



AmoyNQ Hfut NCL OxBlue Oxsy Rione HELIOS WE
0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 G
oa

l D
if

fe
re

nc
e

 

 
Without PSP
With PSP

Fig. 6. Performance Comparison Of OxBlue2009 with and without PSP

of OxBlue2009 for most teams. Under Ri-one the AGD explicitly increases by
about 2 goals; and for AmoyNQ, Hfut and NCL, the PSP contributes about 1
goal increase for each game on average. However for Oxsy, PSP will lead to the
performance decrease. It is mainly because the plan pool does not contains the
particular plans targeting this team and the plans were not learned based on
Oxsy. In the next section, we will further discuss this problem and introduce our
future work to solve this problem.

5 Conclusion and Future Work

In this paper, we briefly reviewed the roadmap and the previous achievement of
OxBlue2009. We employed a layered decision architecture in OxBlue2009, un-
der which we reviewed the currently most common formation algorithm SBSP.
An instance-based learning is proposed to approximate opponent formation
functions. Also, a novel method called PSP are also proposed in a generalised
POMDP scenario, in which a large selection of cooperative skills can be pre-
sented in a plan pool; and policy search is used to find the optimal policy to
select among these plans.

Though PSP can arguably increase the performance, its main limitation is
the training time — according to our previous research the learning costs about
20–30 hours to converge for a particular team; and when a team changed its
strategies the learning result is obscure. Furthermore it is also time-consuming to
generate a well-designed plan pool for each team. In order to solve this problem,



we are currently working on a more targeting planning method. We detect the
opponent strategies and use PSP to learn to conquer each strategy rather than
the overall team. We are currently working on this method and hopefully we can
use it in RoboCup 2009.

References

[1] Akiyama, H., Shimora, H., Noda, I.: Helios2008 team description. In: 12th
RoboCup International Symposium. (July 2008) (CD Supplement).

[2] Perraju, T.S.: Multi agent architectures for high assurance systems. In: American
Control Conference. Volume 5., San Diego, CA, USA (1999) 3154–3157

[3] Stone, P., Veloso, M.: Layered learning and flexible teamwork in robocup simula-
tion agents. In: RoboCup-99: Robot Soccer World Cup III. (2000) 65–72

[4] Luis Paulo Reis, N.L.: Fc portugal team description: Robocup 2000 simulation
league champion. Robocup 2000: Robot Soccer World Cup IV (2000)

[5] de Boer, R., Kok, J.: The Incremental Development of a Synthetic Multi-Agent
System: The UvA Trilearn 2001 Robotic Soccer Simulation Team. PhD thesis
(2002)

[6] Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic en-
vironment. In Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F., eds.: RoboCup
2007: Robot Soccer World Cup XI, Lecture Notes in Artificial Intelligence. Vol-
ume 5001., Springer (2008) 377–384

[7] Yang, A., Abbass, H.A., Sarker, R.: Landscape dynamics in multi-agent simulation
combat systems. In: AI 2004: Advances in Artificial Intelligence. (2004) 39–50

[8] Vaughan, R., Sumpter, N., Frost, A., Cameron, S.: Robot sheepdog project
achieves automatic ock control. International Conference on Simulation of Adap-
tive Behaviour (1998)

[9] Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in
automatic flock control. Journal of Robotics and Autonomous Systems 31 (2000)
109–117

[10] Obst, O.: Using a planner for coordination of multiagent team behavior. Pro-
gramming Multi-Agent Systems 3862/2006 (2006) 90–100

[11] Obst, O., Boedecker, J.: Flexible coordination of multiagent team behavior using
htn planning. In: RoboCup 2005: Robot Soccer World Cup IX. (2006) 521–528

[12] Ma, J., Cameron, S.: Combining policy search with planning in multi-agent coop-
eration. In: Proceedings of RoboCup 2008: Robot Soccer World Cup XII, Lecture
Notes in Artificial Intelligence, Springer (2009) to appear.


	(2D) Team Description
	Jie Ma
	1 Introduction
	2 Decision Architecture
	3 Formation
	3.1 Instance-based learning and Opponent Modelling

	4 Policy Search Planning (PSP)
	5 Conclusion and Future Work


