Team Description of opuCI_2D 2009

Takesuke Uenishi and Tomoharu Nakashima

Department of Computer Science and Intelligent Systems
Graduate School of Engineering, Osaka Prefecture University
Gakuen-cho 1-1, Naka-ku, Sakai, Osaka, 599-8531
uenishi@ci.cs.osakafu-u.ac. jp
nakashi@cs.osakafu-u.ac.jp

Abstract. This paper describes opuCI_2D | our soccer team that has
been submitted to the qualification for the competition of the soccer 2D
simulation league of RoboCup 2008. The main characteristic feature of
this team is to use neural networks for team formation. The position
of our players who are not in ball possession is determined by a neural
network based on the current ball position. The position of opponent
players are also estimated from the ball position by neural networks.
We show a series of computational experiments to show that the use of
neural networks gives a beneficial effect on our team.

1 Introduction

Team opuCI_2D is the new project in Osaka Prefecture University (OPU) after
OPU_hana_2D project finished. CI in opuCI_2D means computational intelli-
gence, which is the main research field of our laboratory.

So far we have applied various computational intelligence techniques [1] such
as fuzzy logic [2], neural networks [3], evolutionary computation [4], and rein-
forcement learning.

2 Formation Learning by Neural Networks

In this paper, we use the term “team formation” to refer to the positioning of
player agents based on the ball position. Although this definition is not exactly
correct in all cases, it works for most of teams because the ball position is one
of the most important factor to consider the game situation. Thus the problem
here is to learn the mapping from the ball position to the player position. Three-
layered neural networks are used to realize this mapping.

We show the architecture of the neural networks in Fig. 1. Since the input
of the target mapping is the ball position, there are two units in the input layer
and the output layer, where the coordinate (i.e.,  and y) of the ball (b, b,) and
the player (ps,py) is used as input/output information.

The number of hidden units indicates the complexity level of the input-output
mapping that neural networks provide. That is, complex and non-linear map-
pings can be obtained if the number of hidden units is large. The disadvantage



2 T. Uenishi and T. Nakashima

Hidden layer

Input layer Output layer
b, Px
by Py

Fig. 1. Three-layered feed forward neural network.

Sx)
N

0.9

Fig. 2. Sigmoid function (Cutting lines at f(z) = 0.1,0.9).

of having a large number of hidden units is that there will be too many weights
to tune during learning and thus the learning speed will be very slow or often
stuck in a local minimum. In this paper, nine hidden units are used for on-line
learning and ten hidden units for off-line learning.

The activation function used to calculate the output of each unit is the sig-
moid function (see Fig. 2).

While the output range of the neural networks is from 0 to 1 due to the
nature of the sigmoid function, we modified the output values from the neural
networks so that the minimum and the maximum value is 0.1 and 0.9 as follows:

oy = max{0.1, min(0.9,0nn)}, 1)

where oy is the output value from a neural network and o/y 5 is the modified
output. The reason for this modification is that we want the neural network to
learn efficiently. It is obvious that the derivative of the activation function is not
very sensitive around its extreme values (i.e., around the output values 0.0 and
1.0). This modification is simple but powerful for efficient learning for the valid
output interval (i.e., from 0.1 to 0.9).



opuCI_2D 2009 3

One neural network corresponds to the mapping for one player in this paper.
Thus 11 neural networks are used for our team formation and another 11 neural
networks for the opponent team formation.

3 Implementing Neural Networks for On/Off-Line
Learing

We implemented two modes of the formation learning: On-line and Off-line learn-
ing. The on-line learning aims to learn the opponent team formation during the
course of games. On the other hand, the off-line learning forms the formation of
our teams by imitating that of other good teams. In the following subsections,
we will explain these two implementations in detail.

3.1 On-line learning

The purpose of the on-line learning is to learn opponent team formation during
a game. Since player agents cannot have full information on the team formation
by regulation, a coach agent is used for the on-line learning of team formation.

Once a game starts, the coach agent records the ball position and the corre-
sponding position of all the 11 opponent players. That is, an input-output pair
is monitored for each opponent player per time step. When a certain amount of
input-output pairs are obtained, the coach agent trains 11 neural networks us-
ing the input-output pairs. The training of neural networks are done as threads
so that the coach agent can continue to collect input-output pairs immediately
after it spawns the neural network threads.

In each thread, the neural network is trained until a pre-specified termina-
tion condition is satisfied. After the training of neural networks are terminated,
the coach agent sends the weights of trained neural networks to player agents.
The official rule allows the coach agent to send a free message only when the
game is suspended (e.g., before_kickoff, kickin, etc.). Furthermore there is a limit
on the length of free message (128 bytes). The coach agent first compress the
information on the trained neural networks by converting the decimal system to
the 72-base system because there are 72 characters that are allowed to use in
the free message format (a-z, A-Z, 0-9, (, ), ., +, *, /, 7, <, >, and _). By the
above procedure, the information on the weights of a neural network with nine
hidden units is coded into 256 characters. Since it takes 256/128 = 2 time steps
to send the information of a neural network, 2 x 11 = 22 time steps are necessary
to send the information for 11 opponent player agents.

Even after sending the weight information to player agents, the coach agent
has the right to spawn another neural network threads for additional learning.
In Section 4, we investigate various settings of the on-line learinng.

3.2 Off-line learning

In contrast to the on-line learning in Subsection 3.1, log files are used for the off-
line learning. The purpose of the off-line learning is to imitate a team formation



4 T. Uenishi and T. Nakashima

from strong teams. For this purpose, we used log files of RoboCup 2008 which was
held in Suzhou, China. While there are two types of log files (RCG and RCL),
we used only RCG files because RCG files include all the necessary information
on team formation.

First we generate a training data set from log files by extracting the relation
between the ball position and the corresponding positions of player agents. The
extraction process is performed only when the game mode is play-on mode in
the log file. After preparing a training data set, a single neural network is trained
for the learning of one ball-player mapping. In the off-line learning, there is no
time limit because the learning takes place after games. Thus we can perform the
learning much longer than in the case of on-line learning. Also there is no need for
sending the information of trained neural networks in a limited message length
as in on-line learning. So for the off-line learning, the number of hidden units
is specified as ten so that the mapping realized by the trained neural networks
can represent any complex relation between the ball position and the players’
position.

4 Computational Experiments

In this section we show some computational experiments where the learning
ability of neural networks are investigated.

4.1 On-line learning

In the on-line learning, it is important when to start the learning of neural net-
works and when to stop because the learning process is performed during the
course of a game. Although we have to start the learning as fast as possible,
there are not enough information to train neural networks at the beginning of
the game. So we have to collect as many training patterns as possible. However,
for example after 6000 training patterns are collected (i.e., 6000 time steps has
passed), such collected training patterns are useless any more because the game
is soon to end (or already finished). In this subsection, we investigate the learn-
ing performance of neural networks with various amount of training patterns.
We also investigate the learning performance with various number of learning
iterations. For this experiments, HELIOS2008 was used to evaluate the learning
ability of the neural networks. In Fig. 3 we show the results of the experiments
where the training of neural networks started after 1000 time steps have passed.
It should be noted that training patterns are not generated if the game mode
is not play-on. Thus the number of the collected training patterns is less than
or equal to 1000. From Fig. 3, we can see that the mean square error (MSE)
decreases as we continue to train the neural networks. We can also see that 1000
iterations for the learningis almost enough for practical use with a sufficiently
low error.

Next, we fixed the number of learning iterations as 1000 but changed the
collecting time step of training patterns. Figure 4 shows the experimental results



opuCI_2D 2009 5

MSE
0.009
0.008 \
0.007
—Agent 1
0.006 ——Agent2
—Agent 3
0.005 ——Agent4
——Agent 5
0.004 —Agent6
Agent7
0.003 - Agent 8
- @0 Agent9
0.002 B —— Agent 10
- Agent 11
0.001
0 H 4
1000 2000 3000

Learning iterations

Fig. 3. Experimental results (Amount of data: 1000 time steps).

where we started the training of neural networks after 1000, 2000, and 3000 time
steps. The training terminates by the learning iterations of 1000. From this figure
we can see that the error increases as the collecting time step increases. This is
because there are more training patterns when collecting time steps are longer
and it became more difficult to find appropriate weights of the neural networks
within 1000 iterations. In another experiments, we confirmed that the error
decreases when we continued to train neural networks even after 1000 iterations.

4.2 Off-line learning

We also examined the performance of neural networks for the off-line learning.
Because of the regulation of the qualification (TDP should be 4 pages to 6),
we do not have enough space to present the experimental results for the off-line
learning. To report the experimental results of the off-learing briefly, we observed
that lower error rate was achieved and continued to decrease for a long learning
iterations when the learing rate is 0.2 and inertia moment rate 0.2.

5 Conclusions

This paper described the development of this year’s team opuCI_2D . The main
feature of the team is the use of neural networks for team formation learning.
The standard three-layered neural networks are used for this purpose. We showed
on-line and off-line modes of the team formation learning. In the on-line mode,
training patterns for the learning of the neural networks are incrementally stored
by monitoring the ball position and the corresponding position of player agents.
Log files are used to extract training patterns in the off-line mode. A series



6 T. Uenishi and T. Nakashima

MSE
0.035

0.03

0.025 —Agent 1
——Agent2
—Agent 3
0.02 —Agent4
——Agent 5
——Agent 6
y, Agent7
Agent8
Agent9
Agent 10
Agent 11

0.015

\\\

0.01

\
AR
Al \

0.005

1000 2000 3000
Collecting time steps

Fig. 4. Experimental results (Learning iterations: 1000).

of experiments showed the learning ability of the neural network, and we also
showed some practical application where trained neural networks are successfully
used.

It should be noted that in this paper we define the team formation as the
relation between the ball position and the positions of player agents. Thus for
those teams that do not actively use the ball position to determine players’
position, this learning method does not necessarily work well. Nevertheless it is
almost certain that the ball position is one of the most important factor for most
of teams. Thus the approach taken in this paper should work in practice at the
competition.

References

1. T. Nakashima and H. Ishibuchi, “Computational Intelligence in RoboCup Soccer
Simulation”, Computational Intelligence: Principles and Practice, G. Y. Yen and
D. B. Fogel (eds.), IEEE Computational Intelligence Society, pp. 217-236, 2006.

2. T. Nakashima, M. Udo, and H. Ishibuchi, “A fuzzy reinforcement learning for a
ball interception problem,” Proc. of RoboCup 2003 Symposium, in CD-ROM (8
pages), Padova, Italy, July 10-11, 2003.

3. T. Nakashima, and H. Ishibuchi, “Mimicking Dribble Trajectories by Neural Net-
works for RoboCup Soccer Simulation,” Proc. of 2007 IEEE Multi-conference on
Systems and Control, pp.658-663, Singapore, 2007.

4. T. Nakashima, M. Takatani, M. Udo, H. Ishibuchi, and M. Nii, “Performance
evaluation of an evolutionary method for RoboCup soccer strategies,” Proc. of
RoboCup 2005 International Symposium, in CR-ROM (8pages), Japan, 2005.



