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Abstract. This paper describes the current efforts and achievements
of the 2D RoboCup Simulation League team KickOBTUG in research,
agent development as well as contributions to the community.

The team’s research focus comprises behaviour modelling and adaption
of agents or robots by means of intuitive user interfaces. We have thus
proposed a system to transform tactics graphs from books on soccer
strategies or tablet-pcs and digital whiteboards into behavioural plans.
This should be as intuitive and easy as sketching on paper. The first
direct approach utilizes the team’s predicate implementations as domain
model. These are the agents’ logic foundations to evaluate each world
state they could encounter and chose an appropriate action accordingly.
The combination of all true predicates yields the description of a sketch.
Furthermore we have been constantly improving how the agents perceive
their surroundings. Efforts to enhance the self model by Kalman filters
are demonstrated in empiric results.

1 Contributions

KickOff TUG is highly active in the RoboCup community. The following activi-
ties

— As part of the OC for 2D RoboCup Simulation League, we are trying to
improve qualification and tournament processes.

— Andreas Hechenblaickner has implemented a modern league manager to sim-
ulate tournaments effectively.

— KickOffTUG has revived the Soccer Simulation Internet League as testbed
for teams to compete off-season.

— KickOff TUG is promoting RoboCup in Austria successfully. The assistance
in RoboCup 2010, supporting programme in various public congresses and
the award for best scientific communications for our participation in the
'Lange Nacht der Forschung’ (Night of Research) are examples we are very
proud of.

— The 2D RoboCup Simulation League is used as experimental testbed for
various courses at Graz University of Technology, as well as for European
educational events and internships.



2 From Sketch to Plan

2.1 Introduction

In each RoboCup soccer league it is very important to build up soccer domain-
knowledge and how this is done. In most teams this is a time-consuming and
laborious job of transforming soccer tactics (esp. from books like [1] or [2]) or
other concepts into specific models, plans or source code. This causes many
hybrid and imcompatible descriptions of the same ideas making exchange and
mutual improvments virtually impossible.

We think adapting the agents’ behaviour should be as simple, fast and intuitive
as scribbling on a piece of paper or scanning diagrams. As a matter of fact, we
believe that this should be true for any interaction with a machine. Therefore, we
are constantly working on a system for an easy translation of dynamic sketches
(i.e. sketches that not only contain graphic information but also the chronologi-
cal order of strokes) into behavioural descriptions.

In the special case of RoboCup the input to the system is a graph (a scan) or a
segence of strokes depicting an agent’s behaviour in a concrete situation. As 1 il-
lustrates generally, this approach is based on several transformations and models
of representation. In the first stage we recognize the tactics graph and translate
it to a spatial-temporal representation of the described situation. This model
typically contains a set of circles representing the own, the opposing players and
the ball and a set of different arrows standing for the actions to be performed by
the players, respectively. By using a domain-model the spatial-temporal model
is then transformed into a domain-specific situation model. This model in turn
comprises a set of literals describing the situation given by the strategy graph,
the actions which are applied to this situation and a set of conditions describing
the situation after application of the actions. A combination of such strategic
models creates an overall model of the agents’ behaviour.

In the first version of development, we have introduced a Matlab script and an
extention to our project tool to perform the first and second stage of transfor-
mation. In order to derive a representation of a given sketch we employed the
predicates implementations of our agent code as a domain model for sketch in-
terpretation. In the following this approach is discussed and first empiric results
are presented.

2.2 Deriving the representation of a sketch

We have implemented a first approach of automatically recognizing and inter-
preting a sketch in RoboCup. The sketches, recognized by the Matlab scan-
recognition module, are translated directly into our plan tree notation for agents’
behaviours. This is an adpation of T-R-Programs (see [3]) combined with the
STRIPS notation (see [4]). A plan tree comprises action nodes and subplans. An
action node in turn consists of several sets of predicates (pre-, post-conditions
and invariants), an action symbol and parameters to this action. To find a deci-
sion the agent depth-searches the tree to find a node whose post-conditions are
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Fig. 1. The process of automatically deriving a behavioural model from several tactics
graphs.

false, but pre-conditions are true. This denotes, that the effects of an action has
not yet been fullfilled, but the action (i.e. the grounded action symbol) can be
executed (with the given parameters). Invariants help to maintain deliberativity
of a decision as an action is executed as long as the invariant remains satisfied.
In order for the agent to be reactive, the tree is traversed from the root other-
wise (thus, the whole search space is again examined). For a detailed report on
KickOffTUG’s decision-making see see [5], [6] and [7].

At the moment input to the system can either be a drawn or scanned static
sketch or a situation put together graphically with a few clicks in a new frame of
our project tool. Both provide entities already recognized to the interpretation.
These tools are only the first step to a fully-integrated sketching system, which
has yet to be implemented. A possible input would thus be from [1] like the
example shown in Fig. 2.

Thus, a simple domain-specific spatial-temporal model with players and the ball
recognized and annotated with field positions as well as actions to be performed
is handed over to the interpretation. A concrete result of the recognition is shown
in Fig. 2 as well.

The interpretation is based on the predicates our team has implemented to
evaluate each situation our agents could encounter. Examples would be the
predicates hasBall(A), checking whether an agent A is in ball possession, or
passPossible(X,Y), examining whether agent X can safely pass to agent Y.



Applying this as domain yields a qualitative description of a given tactics sit-
uation. Simply spoken, this description is currently derived by executing the
predicate implementations with all reasonable parameter combinations on the
input model. The combination of the symbols of all true results provide the
pre-conditions of the depicted tactics situation. Depending on the action to be
performed, the post-conditions and invariants are compiled accordingly. Fig. 3
yields the resulting plan of the transformation process for the given example.
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<sketch>
<own-players>
<player>
<pos><x>28.07</x><y>-13.04</y></pos>
<action type="dribble">
<start><x>28,07</x> <y>-13.04</y></start>
<end><x>28.71</x> <y>-3.59<ly></end>
<laction> ..
<Iplayer> .
<lown-players> ...
<Isketch>

Fig. 2. The recognized graph is Fig. 3. The resulting plan.
transformed into a simple spatial-
temporal representation.

In the simplest case this qualitative model will be directly inserted into an
overall plan tree by attaching it as sibling. As each situation broadens the tree
further, this will probably turn out to be very inefficient. Therefore, techniques
to deepen the tree have to be implemented. One approach would be binary
ramification, i.e. using common predicates as anchor points to ramify the tree.

2.3 Experiments

We have set up a series of experiments using our team KickOff TUG as environ-
ment to elaborate the two questions whether

— this process is promising, extrapolating from this first approach

— an existing domain-model can be applied to perform the third stage ’Inter-
pretation’ of the sketching process

In our experiments we only consider goal-preparing or offensive situations, i.e.
situations in which the ball is near the opponent goal and our team is in ball
possession. From each sequence of possible situations, we draw three by chance.



The resulting set serves as '’knowledge input’ to our interpretation. Again each
situation already comprises a spatial-temporal model for the soccer domain, so
there is no need to preprocess it in terms of the first and second stage of the
transformation process.

Next, the set of predicates of our team serves as grounding domain for inter-
pretation. Each condition is evaluated over all combinations of entities of each
situation and each entity and the result stored as preconditions to a new plan,
and thus yields a set of plans.

This set of plans is the test set which is evaluated over 15 test games in the fol-
lowing way: The decision-making is presented with each offensive situation from
the logs. Thus, the set of plans is searched for those plans whose preconditions
are true for the given situation. This is called a hit. The set of plans is then
sorted by hits and similiar plans are resolved heuristically to ensure the quality
of the plans.

The resulting set of plans is then evaluated in two ways. In a first experiment,
they are evaluted over fifteen further test games in two steps:

1. The plan coverage is calculated by checking how many offensive situations
can be covered with various selections from the plan set.

2. The plan quality is computed by comparing whether the hitting situations
resemble the original from which the plan was created.

In a second experiment, the plan quality is determined statistically by simulating
a tournament of 100 games. The 12 derived plans are connected to our standard
plan in a way they are examined first when searching for a decision. Furthermore,
an appropriate action has been added to each plan. This means, whenever a plan
hits, the according action is executed. The better the situation has been modeled,
the better the influence of the action should be on the score. On this base, 50
games have been simulated with sketch plans and 50 without.

The logfiles are then evaluated offline. Each set of 50 games is recalculated.
Whenever a hit occurs, the logs are checked whether the offensive situation as
described by the plan has had (for simulations with sketch plans) or would have
had (for simulations without sketch plans) an influence on the score. On both
sets the ratio between the number situations resulting in a goal and the overall
count of hit situations is calculated and compared. We can thus see, how the
test plans performed in the modelled situations against what to expect from the
standard plans.

2.4 Results

Results of our tests showed that we are indeed able to describe soccer situations
in 2D RoboCup Simulation League automatically with the aid of an existing set
of conditions as model. In order to provide deployable plans for the Simulation
League team, manual post-processing of the plans or adaptions of the model are
yet necessary in this simple setup. Fig. 4 shows the accumulated plan coverage
for twelve plans derived by the previously described process and sorted by their
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Fig. 4. The accumulated plan cov-  Fig. 5. The quality of each of the
erage of the 12 plans with highest 12 plans in percentage of correctly
hit count. classified situations.

extent of contribution. In total it is possible to achieve a coverage of 30.3 percent
of all offensive situations with only 12 plans.

Concerning quality of the plans, we have tested the resemblance of hitting sit-
uations to the original. Experts have rated whether a situation was correctly
classified or not. Fig. 5 depicts their ratings on the twelve plans. In total 43.69
percent of situations were classified correctly. To further increase classification
results specific conditions have to be introduced based on these results.
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Fig. 6. Result ratios of 50 simulated games with (left) and without (right) test plans
(average in red).

Results of the second experimental setup illustrate the quality by simulation.
Fig. 6 shows the results of the experiments, i.e. the ratios of situations that
contributed to a goal to all that occured over 50 games, simulated with and
without sketch plans. Again, an average of 39 percent compared to 59 percent
combined with the manual evaluation of situations conveys that the modelling
was successful for most cases, but still could be improved. This value will be
used as characteristic value to rate further improvements.



3 Self Model

3.1 Introduction

The better the world model, i.e. the agent’s believes about its surroundings, the
better the decisions it can make. This is why KickOffTUG is constantly trying
to improve how sensor information is incorporated. This applies to how an agent
sees itself, but also the positions, movements and decisions of the own as well as
opposing team. The following describes current efforts made in measuring and
filtering all information concerning the self model briefly.

3.2 Calculations

The Self Model determines the position and velocity of the agent. Each send
step the server transmits vision sensor information to the agent. This message
contains following measurements of the flags and lines, which are within the
viewing cone of the agent:

distance
direction
distance change
— direction change

Each measurement is quantized. The angle is rounded (rint) to the nearest inte-
ger value. The degree of the quantization of the distance ascends with the length
of it. In Fig. 7 the quantization of the measured distance of a player is plotted,
as the quantization step of the landmarks are smaller.

Fig. 7. Player distance quantization: distance in green compared to the quantized value
in blue.

In order to calculate the agent’s own position at least one line and two flags
are required. With this information the following calculations are performed:



1. The body facing direction is calculated with the help of the lines and the
absolute head facing direction is determined.

2. With the help of two flags and the absolute head facing direction the position
of the player is derived.

3. The remaining flags are used to correct this position as well as the body
facing direction of the agent.

4. The player’s velocity is calculated.

3.3 Extended Kalman Filter

The EKF is a state estimator. Compared to the standard Kalman filter it can
been be used for nonlinear systems by linearizing the mean and covariance values
(see [8]). Having Extended Kalman Filters (EKF) successfully applied to robot
self-localization, we have incorporated it into our team to filter measurements.
To illustrate how the EKF works, the position measurement update with one
flag is shown as example.

Covariance and the state vector are initialized with the results of the two flag
measurement as above. The state vector for a one flag measurement contains the
position (z, y) and body facing direction 6 of the robot:

xT

T = Yy (1)
0

The EKF is updated with the help of each flag measurement. Let z be the
measurement of the absolute distance and angle to the flag. The covariance
matrix R for the measurement contains the variance of this distance and angle.

_ (dfiag
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The predicted measurement is then calculated as followed:
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The Jacobian of the predicted measurement is the derivation with respect to

the state:
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With every measurement update of the EKF the variance (compare Fig. 8)
of the robot position and body facing direction declines. This means that the
value of the state becomes more precise and trustworthy.
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Fig. 8. The variance values of the main diagonal of the state’s covariance matrix.

3.4 Experiments

An experiment was designed to test the self model. It generates random posi-
tions and calculates noisy flags and lines. The data of this test set is used to
call the position calculation routines. The estimated output concerning position
and body facing direction is compared to the correct values and thus, the error
values are derived.
In Fig. 9 these values are outlined. In this figure the error of the calculated posi-
tion to the correct is plotted. The differences of x- and y-coordinates are shown
in blue and green respectively. The green line conforms to the the euclidean dis-
tance beween the calculated position and the real one.
The overall results of our tests are:

— Body Direction

— max: 1.34

— mean: 0.144

— dev: 0.091

— examples: 9336

— mean of examples: 0.144

— Position

— max: 0.92

— mean: 0.112

— dev: 0.062

— examples: 9336

— mean of examples: 0.112

For the given amount of examples, the error of the calculated body facing direc-
tion and the correct one is about 0.144 degree and the distance of the calculated
position to the real one is about 0,112 meters. As can be seen, the mean error
values are quite good, although some greater drifts (max values) could appear.
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Fig. 9. The plotted position error.

4 Conclusion

We have presented the efforts of KickOfTUG in the past year concerning com-
munity contributions, research as well as team improvements. KickOffTUG has
been very active promoting and fostering RoboCup in Austria and support the
league to develop. Relating to research we have developed a first version of a
sketch interpretation mechanism that will improve human-robot interaction and
behaviour modelling. In the next steps, research into model-based diagnosis and
recommender systems performed at the Institute for Software Technology will
develop the methodology. Last, we presented empiric results on our research into
filtering techniques to optimize the agents’ perception of their surroundings.
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