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Abstract. This paper presents some of the recent improvements of the
DAInamite team, which was developed by the DAI-Laboratory 1 of the
Institute of Technology of Berlin.

1 Introduction

DAInamite has quite a long history in the RoboCup 2D Simulation League. How-
ever, due to a personal reorganisation of the developer team, it didn’t participate
in the last championship in 2010. Therefore, most of the results presented subse-
quently were developed in the context of courses held at TU Berlin. Nevertheless,
we believe that the results are of some value to the robocup community, and that
the competitiveness of the team increased such that it is almost ready for the
upcoming competition.

DAInamite was implemented without relying on any sourcecode released by
others. In the beginning however some ideas where taken from [1]. Our main
research focus lies on agent architectures, and in this regard no external sources
influenced the development process. The general architecture is already pub-
lished in previous TDP’s. For an overview refer to the DAInamite 2008 TDP [3].
Our current efforts mainly aim at increasing the competitiveness of the team, and
to further improve the design of the agent. Furthermore, providing support by
means of tools is also of importance. We subsequently present the following sec-
tions that highlight our recent developments: First, we describe the integration
of reinfrocement learning in our framework from the point of view of software
design. Then, we briefly describe our latest tool - a logfile analyser. And finally,
we mention our new movement planner based on A*-like algorithms.

2 Reinforcement Learning Framework

Reinforcement Learning (RL) [10] is one of the main approaches when applying
machine learning to agent oriented systems, and therefore it is hardly surprising
that it is also widely used in robotic soccer. Due to its trial and error nature, RL

1 http://www.dai-labor.de



applies very well to the simulation leagues (see for instance [4], [8], [7] or [9]),
where training runs fast and without the costs of maintaining real robots.

Since our research focus lies on agent architectures, we believe that support-
ing RL is important. Hence we developed a well designed learning toolkit on the
basis of PIQLE [2] and WEKA [5], and integrated it into our agent framework.
In the following, we outline the characteristics, which distinguish from work that
is found elsewhere.

Fig. 1. General reinforcement learning framework, adopted from [10]

In general, RL follows a very simple pattern (see Figure 1): During learning,
the agent beliefs to be in state st, and performs an action at. He observes the
successing state st+1 and a numerical reward rt+1. The complete information
(e.g. the tuple <st, at, st+1, rt+1> in Q-learning 2) is then used to improve his
policy. Once found, the agent can behave on behalf of the (near) optimal policy
by choosing the action that will return the highest expected long-term reward
for his current state.

Many of the tasks that arise in simulated soccer have to be solved by more
than one agent (e.g. every agent needs a dribbling skill), and therefore it is
advantageous to a) let them share their experiences during learning, and b) let
all of them use the policy found during learning thereafter. A similar approach
was taken in [6], where communication was used to share the experiences. We
decided to implement this in a service oriented way. The complete functionality
is hidden behind an interface that is available to every agent. The interface
provides the following operations:

1. newRLScenario(Environment): This operation is used to setup a new RL
scenario. A specification of the environment has to be provided as argument
(defining how states and actions look like). Each scenario has a unique id,
which is returned by this operation on successful creation.

2. learnFromPast(Id, State, Action, State, Reward): This operation is
used for learning. The scenario id must be provided as argument.

3. getAction(Id, State, List<Action>): This operation is used to retrieve
the next action depending on the policy and the current learning progress.
Again, the id must be provided, together with the current state of the agent
and a list of available actions.

2 The correct update rule is slightly different, but can be determined using these values



4. Configuration Methods: Most other operations are used to manage the
learning tasks, i.e. to change the learning rate, the policy (greedy or, ε-greedy,
etc.), and other variables.

Fig. 2. Reinforcement learning service framework

As can be seen, every scenario is referred to by a unique identifier, which may
be shared by a set of agents. This way, an agent can either decide to participate
in a scenario by providing learning experiences, use a given trained policy, or
setup a complete new learning task. From a very general point of view, this looks
like shown in Figure 2, where the agents delegate every RL specific operation
to the service. Finally it is noted that the service-oriented approach violates
the rules of robocup, since agents are not allowed to have any kind of shared
memory. However, we can simply avoid this by assigning a copy of the service
to each agent during competitions.

So far, we have implemented Q-learning as algorithm. For value-function
representation, we have implemented lookup tables and tile coding by ourselfs,
and also made the various classifiers from the WEKA framework available, which
provides a variety of function approximators (e.g. neural networks or support
vector machines). We used the framework already for teaching, where skills like
dribbling and scoring where successfully learned. Possible extensions would be to
add other RL algorithms (e.g. SARSA), or to support multi-agent or hierarchical
RL.

3 Logfile Analyser

Another new achievement is the implementation of an automated logfile anal-
yser [11], which is capable of generating performance statistics of the teams or
of individual players that participated in a logged match. Among other features,
the analyser presents statistics on ball-possession, stamina consumption, player
and ball trajectories, passes, dribblings and duels. It uses different types of dia-
grams and charts, and can also draw information directly on our monitor tool.



The main purpose of this tool is to assist the developer in analysing the progress
of the team performance. Two example statistics generated from the final match
from the 2010 competition are given in Figure 3.

Fig. 3. Screenshot showing two views of the logfile analyer. On the left side, the tra-
jectories of the ball (including how it was controlled) is shown. On the right side a
ball-possession statistic is shown. Both were generated from the logfile of the final
match of the 2011 championship (left: helios, right: wrighteagle).

4 Planning of Movements

Next, we like to mention our new A∗-like planning algorithm for movements
of players. It was developed as a tool that should simplify the calculation of
movements in all dash-directions, and also to give accurate estimates on how
long a player requires at least to reach a certain position.

Generally, the algorithm consists of two components: One for creating short-
term plans of up to 4 cycles ahead exploring all dash-directions, and one for
longterm plans of any length, which first turns to the target and then uses for-
ward dashes. Only dashes of maximum power are considered, and dashes that
do not accelerate towards the target in at least a fraction are ignored as well.
Both components are based on A*, but distinguish in the types of actions that
were considered, and in the length of plans that are calculated.

The complete algorithm works as follows: It first decides, which component
should be used based on a simple heuristic: If the distance to the target divided
by the maximum speed of the player is less or equal to a pre-defined small
number (we use the limit of 4), the shortterm planner is used. As not always
maximum speed of the player is possible, the shortterm planner may terminate
without a result. In this case, or if the aforementioned condition is not satisfied,
the longterm planner is used (thereafter). With an average computation time of
0.1ms per target 3, the planner is also applicable for complex computations like

3 using a 2GHz computer



the determination of the interception point 4. Interestingly, the computation
time is not much higher when computing larger plans, because the longterm
planner does not branch, and thus has almost linear complexity. Two examples
of generated plans can be seen in Figure 4.

Fig. 4. Screenshot showing the performance of the A* planner. Left: Creation of a
shortterm plans using all dash-directions. Right: Creation of a longterm plan by turning
first, and then dashing forward (the half transparent players indicate the expected
positions in the future when following the plan).

5 Conclusion and Future Work

In this work, we presented some of our recent developments of the DAInamite
framework. First, the conceptual integration of a service-oriented RL approach is
described, whcih was developed and tested during coursework. Thereafter, a new
tool, the logfile analyser, is shown, and finally we sketched our A*-like planner.
Each of those features increases the value of our framework by supporting in
different stages of the development process. We think that this will lead to better
team performance in the long run as well.

In the future, we plan to release the main parts of our framework as open
source project, because it might be a good starting point for newbies to the
robocup simulation league. W.r.t. the agent design, we plan to better incorporate
the action selection for secondary actions (e.g. say or turn-neck), which should
seemlessly integrate into our decision tree, and to further develop our tools.
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