
EdInferno.2D

Team Description Paper for RoboCup 2011

2D Soccer Simulation League

Majd Hawasly and Subramanian Ramamoorthy

Institute of Perception, Action and Behaviour
School of Informatics, The University of Edinburgh

Edinburgh, United Kingdom
M.Hawasly@sms.ed.ac.uk

Abstract. In this description document, we outline the main ideas be-
hind our entry to the RoboCup 2011 2D Soccer Simulation League com-
petition. This simulated soccer team, EdInferno.2D, represents our de-
but in this league. The major research issue that drives our effort is that
of cooperative sequential decision making and online learning in envi-
ronments that continually change. We outline a framework for high-level
decision making and discuss how this is implemented in a fully functional
simulated team.

1 Introduction

EdInferno.2D is competing for the first time in RoboCup 2011. The team is
the outcome of research within the Robust Autonomy and Decisions group1, led
by Dr. Subramanian Ramamoorthy, at the Institute of Perception, Action and
Behaviour in the School of Informatics, at The University of Edinburgh. Re-
search within the RAD group is primarily concerned with autonomous decision
making over time and under uncertainty by single or multiple agents interacting
with a continually changing world, typically involving large state/action spaces,
strategic objectives and sophisticated task specifications/constraints. This 2D
soccer team is part of a larger RoboCup effort within the RAD group, including
a new SPL team, EdInferno, which has already secured its place in international
competitions at RoboCup 2011. The objective in developing a 2D simulation
team is to study the space of problems arising from the multiagent platform
of Soccer Server which enables exploration of cooperative decision making un-
der uncertainty and in the presence of adversaries, in a way that goes beyond
the physical robot leagues that are still constrained by the hardware and low-
level systems issues. The potential for strategic sophistication in the simulation
platform makes it a suitable test bed for our research.

1 http://wcms.inf.ed.ac.uk/ipab/autonomy



2 Scientific focus

We come from a solid background in machine learning and reinforcement learn-
ing for robotic systems. Our research interest lies in the problem of learning by
interaction within large, somewhat arbitrarily evolving, worlds using resource
limited agents; and especially in the problem of cooperative decision making
within such environments. A number of different methodologies have been de-
veloped to tackle change in decision problems, which we view as a central fea-
ture in domains such as soccer. Usually, change is posed as perturbation to an
underlying stationary process that governs the decision problem [3, 6, 7]. This
assumption, however, is not always valid. In multiagent systems particularly,
small changes in behaviour of individual players (usually due to learning) could
cause large deviations from a global perspective. Trying to model this in terms
of a stationary process is not always possible.

Moreover, in adversarial situations, it’s essential to discover and exploit op-
portunities and limitations of the unknown adversary. The conservative method
of behaving for a worst-case scenario or using canned reactive behaviours would
usually hinder performance. Normally, this is tackled by utilising a bank of com-
plete or partial plans that the team can choose from online, but this does not
produce real robustness because it only covers situations anticipated by the de-
signers, not all the ones that the team can potentially handle. Low level online
planning and coordination in dynamic partially-observable environments, on the
other hand, is not generally applicable to interesting decision problems of sizes
that render the computation prohibitive [4, 5].

Our approach to this problem is based on online synthesis (in the spirit of
[2]) of robust team capabilities. Capabilities are limited multiagent tasks with
outcomes that are robust locally; i.e. that encode what the team is able do within
some coarse situation (context or team state) in response to noise and variation
up to some robustness threshold. Capabilities work to maintain or transform
between team states, and they are small enough so that they can be scripted
or learnt offline. Using this representation, we propose a collaborative algorithm
that uses only local communication to generate online plans that achieve an
arbitrary goal, and admits scalability without explosion in computational com-
plexity.

3 Framework

3.1 Definitions

A team state is active if the system satisfies its predicate. We assume that tasks
can be described using a suitably sparse set of team states, and the goal of
the task can be described by a proper subset. From each team state, few local

games are available. A local game is a multiagent controller that robustly moves
the system between team states. Using team states and local games, multi-
robot domains can be described using a domain graph: nodes represent the team
states, and the links represent the games. Note that the domain graph is task



independent. One or more nodes (team states) are usually active at any time,
ignoring transient effects. The objective of the team is to drive the system,
through activation of links (local games), into the region of goal states. An
active agent is an agent who maintains an active state while an inactive agent has
maintainable states that are all inactive. Note that inactive agents still contribute
significantly to team performance.

3.2 Application: soccer offence

Team states The team states that define this domain are the holding states
Hi; i : 1, 2, ..., 11; each representing the corresponding player actively holding
the ball, independent of physical location. L corresponds to the ball being
stolen by the other team. In addition to these, the absorbing state GO is the
state of scoring a goal.

Local games The local games that encode the team capabilities are: hold (a
single-agent behaviour for holding the ball and preventing other players from
taking it, a maintainability game for Hi,); dribble (a single-agent behaviour
for dribbling, another maintainability game for Hi,); pass (a passing be-
haviour that involves the ball holder and one other team mate. This be-
haviour links any two different holding states); get ball (a behaviour that
makes the player seek the ball and try to bring it into possession. This
behaviour links L to the three holding states); and shoot (a single-agent
behaviour that links Hi states to GO.)

Domain graph The ideal domain graph of the offence task is shown in Figure 1
(states and games of only two players are shown for clarity). The domain
graph is a dynamic structure; the links are updated online and can become
broken or new ones may get created. For example, if one of the players is
facing a tough defender, its hold behaviour will eventually lead to state L.

Fig. 1. Domain graph for 2-player soccer offence. The nodes represent the team states,
and the links are the robust local games that encode team capabilities.

Task The offence task can be described as achieving state GO and avoiding
state L. The agent holding the ball is an active agent, choosing to hold ball,



dribble, pass or shoot. Other players are inactive agents who act to optimise
the task accomplishment.

3.3 Algorithm

Notation

– Team state x = {s ∈ S |Fx(s) = true} where Fx is a boolean function over
the state space, Fx : S → {0, 1}, and X is the team state space.

– Local game g: Sg × A × Ψg → [0, 1], is a policy over Sg ⊆ S, joint actions
A and the uncharacterised exogenous dynamics Ψg. Sg is the subset of state
space where g is applicable, and G is the collection of all games. Gx = {g ∈
G |x ⊆ Sg} is the collection of games available at team state x.

– Domain graph DG is the tuple 〈X,RB〉 where nodes are x ∈ X, and RB :
X×G×X×S → [0, 1] is the robustness matrix, where RB(x1, g, x2) = f(s)
is a measure of certainty, under state s, that local game g ∈ Gx1

will succeed
in moving the system to x2 starting from x1.

– Value of team state V : X ×T → R, where V (x, t) is the robustness, at time
t and under state st, of the best path from x to any of the goal states.

Values and sequential decision making The value of a team state measures
how reliably the goal can be reached starting from that state, and decisions
are taken on the basis of local optimisation of value. The value function can
change arbitrarily reflecting the changes in the environment/adversary and the
estimated reliability of local games. The goal states have a fixed value of 1,
and losing states have a fixed value of 0. The value of any other team state is
calculated using the estimated robustness of outbound links and reached values:

V (x, t) = max
g∈Gx, x′∈X

[RB(x, g, x′)(st) ∗ V (x′, t − 1)] (1)

The value reflects the goodness of the full path from any state to some goal
state, up to the collective knowledge of the team.

Local communication In a changing environment, any plan needs continuous
revision. Local communication is used to forge the complete value process as it
changes. Every agent is responsible for estimating the values of a small subset
of team states and communicating them to neighbouring agents. Local updates
arrive quickly, while farther ones require more time to disperse in the graph,
expressing the nature of locality in multi-robot interaction.

Adaptation to changing environments Robustness of links is learnt offline
in standard situations. To account for unknown dynamics and adversarial strate-
gies, continuous estimation of link robustness by the means of online learning is
utilised. This allows the system to adapt to the changing dynamics. Robustness
is estimated as the game’s probability of success under the obtaining state.



Currently, a simple online learning rule is implemented. When the system
moves from state x1 to x2 under the game g, the robustness of that outcome is
reinforced and normalised:

RB(x1, g, x2)(s) =
RB(x1, g, x2)(s) + α

∑
x′∈X RB(x1, g, x′)(s) + α

(2)

RB(x1, g, x)(s) =
RB(x1, g, x)(s)

∑
x′∈X RB(x1, g, x′)(s) + α

;x 6= x2 (3)

Global collaboration Inactive agents act to enhance the flow of value in the
graph. That is, they, alternatively, optimise the robustness of the links that con-
nect them to active states on one hand (e.g., ball holder), and to the high-valued
states (e.g., goal state) on the other hand. Achieved using local communication
only, this is a form of team-level collaboration based on common values, beyond
the local collaboration that happens inside the games.

Algorithm 1 EdInferno.2D high-level decision making

for t = 1 . . . till the end of the task,

1. agent computes values of its states:
V (x, t) = maxg∈Gx, x′∈X [RB(x, g, x′)(st) ∗ V (x′, t − 1)]

2. agent broadcasts values to state inbound neighbours:
N in

x = {x′ ∈ X|RB(x′, ., x)(.) > threshold}, for all x.
3. Inactive agent optimises the links from active states: arg maxg∈Gx

[RB(x̃, g, x)],
x̃ ∈ N in

x ∩ X̃t, and to best neighbours: arg maxg∈Gx
[RB(x, g, x∗)].

4. Active agent chooses the next game by the optimisation:
bg = arg maxg∈Gx

[RB(x, g, cxg)(st) ∗ V (cxg, t − 1)]
where,
cxg = arg maxx′∈X [RB(x, g, x′)(st)], for all g ∈ Gx

5. agent plays its role for all games under way.
6. If the agent’s game terminates, robustness estimate is updated:

RB(x1, g, x2)(s) = (RB(x1, g, x2)(s) + α)/(
P

x′∈X
RB(x1, g, x′)(s) + α)

RB(x1, g, x)(s) = RB(x1, g, x)(s)/(
P

x′∈X
RB(x1, g, x′)(s) + α); x 6= x2

4 EdInferno.2D structure

The team builds on agent2d base code [1], which is freely available under LGPL.
The framework uses only the basic modules offered by agent2d and Librcsc as
low level controllers and communication primitives, and learns how to synthesise
useful plans using them. The positioning control of agent2d is currently included,
but will later be replaced with the inactive agents optimisation on the domain
graph. The structure of the team, and how that relates to agent2d, are shown
in Figure 2.



Fig. 2. Structure of EdInferno.2D.

5 Future Work

In addition to offence, the defensive task is to be modelled using the framework.
Internally, inactive agents optimisation of value flow in the graph will eventually
replace the heuristic position control of agent2d in the implementation. Achiev-
ing better coordination inside local games requires exploiting other forms of local
communication, like pointing, beside the verbal communication which is used for
global coordination. Finally, the coach global view of the decision problem can
be utilised to change the structure of the domain graph (e.g., by enforcing links)
or the value process (e.g., by enforcing nodes) to rectify team strategy.

References

1. agent2d; http://rctools.sourceforge.jp/pukiwiki/index.php?agent2d.
2. R.R. Burridge, A.A. Rizzi, and D.E. Koditschek. Sequential composition of dynam-

ically dexterous robot behaviors. The International Journal of Robotics Research,
18(6):534, 1999.

3. C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs.
Advances in Neural Information Processing Systems, 2:1523–1530, 2002.

4. E.A. Hansen, D.S. Bernstein, and S. Zilberstein. Dynamic programming for partially
observable stochastic games. In Proceedings of the National Conference on Artificial

Intelligence, pages 709–715. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2004.

5. A. Kumar and S. Zilberstein. Dynamic Programming Approximations for Partially
Observable Stochastic Games. In Proc. of the 22nd International FLAIRS Confer-

ence, 2009.
6. A. Nilim and L.E. Ghaoui. Robust control of Markov decision processes with un-

certain transition matrices. Operations Research, 53(5):780–798, 2005.
7. Jia Yuan Yu and Shie Mannor. Online learning in markov decision processes with

arbitrarily changing rewards and transitions. In Proceedings of the First ICST

international conference on Game Theory for Networks, GameNets’09, pages 314–
322, Piscataway, NJ, USA, 2009. IEEE Press.


