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Abstract. This paper describes our continous effort to automatically
generate behavioral models for agents and robots. Our previous research
into sketch recognition and interpretation is extended by concepts to
populate natural language descriptions into a domain ontology. This re-
search is embedded in the scope of an ontology lifecycle in RoboCup.

1 Introduction

In every RoboCup league domain knowledge is necessary for the agents or robots
to perform intelligent tasks. Many teams use expert literature for the purpose
of transforming soccer tactics into specific models, plans or source code. Un-
fortunately, this is a very time-consuming and laborious job which yields many
hybrid descriptions of the same concepts.
As ontologies store data in a structured way under a semantic context, they
provide a suitable basis for knowledge-based agents to operate on. To face the
above problems, we strongly argue for an automation of knowledge generation by
transforming arbitrary knowledge artefacts (like images and text) from books,
websites or other sources into an ontology the agents can execute.
Take the following tactic description in natural language from [1] accompanied
by the sketch shown in Fig. 1 as example. Both yield valuable information for a
team of soccer agents.

* 5 passes the ball to 9 (who has come towards him) and moves
diagonally to get the return pass;

* 9 passes the ball back to 5; ...

This tactic will also serve as running example throughout the paper. It is easy
for humans to understand it as they are acquainted with soccer, graphs and lan-
guage. They can easily ground the words and components of the sketch in the
soccer domain. The ideas described in this paper follow the same intuition: tactic
sketches and descriptions should be processed and grounded in the RoboCup soc-
cer domain using a domain ontology as well as Sketch Recognition/Interpretation
and Natural Language Processing (NLP) techniques. The resulting populated
ontology can then be employed as knowledge base for the agents in the environ-
ment and should be verified and improved during gameplay.
The efforts in this paper cover the pre-processing of sketches and text to en-
able the population of a soccer ontology and its deployment in the 2D RoboCup
Simulation League.



Fig. 1. A sketch accompanying the instructions from [1].

2 Related Research

Ontologies [2] in software engineering are employed to provide a semantic level
to a set of data models. Their main purpose is to query the database, perform
reasoning on it as well as to present it to and prepare it for users, or to provide a
knowledge base for software (knowledge agents). Naturally, there has been effort
to employ ontologies in multi-agent systems.
Commonly, in most knowledge engineering applications, the users (or knowledge
engineers) have to encode the required knowledge or employ large and bulky
ontologies not specifically designed for the special domain of application. Thus,
one has to accept many drawbacks. In order to keep the knowledge engineer-
ing as intuitive, simple and therefore little time-consuming as possible, multiple
concepts have to be combined into an integrated process.
A system as proposed which is able to support the complete knowledge engineer-
ing process, has to deal with various fields of ontology research: (1) automatic
or semi-automatic creation and management of a domain ontology [3, 4], (2)
population of ontologies from various sources [5, 6], (3) grounding the ontology
knowledge [5, 7], (4) adopting the populated ontology for deployment in the spe-
cific multi-agent system [8], as well as (5) refinement, improvement, enrichment
and verification of the ontology in the environment [5].

3 The Ontology Lifecycle

Related research yielded an integrated process (shown in Fig. 2) dealing with
all necessary steps to automatically generate a populated ontolgy which can be
deployed in a multi-agent system and is able to self-optimize in its environment.
We call this the Ontology Lifecycle.
In the first stage of the ontology lifecycle, knowledge artifacts are pre-processed
to provide more structured data for the remaining steps. This data will then be
interpreted and grounded onto a domain ontology. This means that the ontology
is populated with concrete concepts derived from the data. The domain ontology
may be generated out of suitable data, but is created manually for our tests. The
resulting populated ontology can then be deployed in a concrete environment.



Fig. 2. An integrated process for automatic transformation of knowledge and its de-
ployment in multi-agent systems.

The process is concluded by concepts to verify, enrich and improve this basic
ontology therein.
We have implemented this process up to the population and deployment step.
The 2D RoboCup Simulation League and our team KickOffTUG serve as envi-
ronment for the experiments. Input to the ontology generation are the sketches
and descriptions of tactics from [1].

4 Populating and Deploying a RoboCup Ontology

The automatic population proposed in this paper builds upon a domain ontology.
It contains general soccer concepts relevant for games in the RoboCup Soccer
Simulation League as well as more specific entities for the pre-processing: players
and player types, field components, positions and the tactic model. This model
comprises a pre-condition (under which the tactic should be executed), a set of
actors (participating in the tactic) and a compound of actions each player has
to perform, where actions can be executed in sequence or in parallel. As the
textual input does not convey information on when a team should perform a
certain tactic, the pre-condition can only be derived from the sketch.

4.1 Pre-Processing

Before a description can be actually populated on the base of and into a do-
main ontology, it has to be pre-processed to reduce the complexity of grounding
correctly in the semantics of the ontology. This pre-processing is specific to the
type of knowledge artefact.

In order to prepare a sketch for the population of the domain ontology [9], it
has first to be transformed into a domain-specific quantitative model: For this
purpose the primitives of the sketch, i.e. circles, boxes, etc., are first detected
domain-independently and domain-specifically in a second step. For example,
a circle is then mapped to an agent or a certain box to the penalty area. The



resulting set of entities in quantitative relation is then transformed into a quali-
tative description of the sketch. In our experiments we used the already available
set of predicates of our team KickOffTUG for this transformation.

The pre-processing of text combines state-of-the-art NLP techniques: First,
the text is split into atomic actions by stop-words and stop-chars and the Stan-
ford POS (part-of-speech) tagger is used to assign the lexical category to each
word. Now, irrelevant words or categories are removed. The resulting atomic sen-
tence stubs are transformed into a tuple {S, P,O} (simply referred to as SPO;
with S being the subject, P the predicate and O the object of the sentence).
With subject and object identified, pronouns can now be exchanged by their
corresponding entity.
As the descriptions of the tactics are not linear in time and involve parallel ac-
tivities as well, temporal adjustments are necessary. By evaluating the tenses
and identifying jumps as well as using keywords in the original sentence stubs,
a timestamp is thus assigned to each SPO.
In the last step of the pre-processing, synonyms are resolved so that different
words or phrases with the same meaning are mapped onto the same semantic
concept in the domain ontology. This is done using WordNet in supervised or
unsupervised mode depending on the size of the vocabulary.

4.2 Population

For the purpose of population, test sequences are generated on the base of the
ontology’s taxonomy (this concept is easily extended to follow the restrictions as
well). That is, the root classes corresponding to each element in the SPO tupel
are retrieved from the ontology and specialized test strings are concatenated
from simple identifiers (names or specializing qualifiers) associated with each
class while visiting the subclass relations. This way, each test string is automat-
ically associated with the corresponding ontology class. The test sequences are
then generated as all possible combinations of the subject, predicate and object
test strings, yielding for example ’5 run left wing’.
Each SPO from the pre-processing is then compared to each test sequence by an
adapted Levenshtein distance on word level. The test sequence with the highest
equality is saved as target concept. The SPOs are then traversed to create an
action compound for the new tactic in the ontology: for each action a new sub-
class is derived and the restrictions to subject and object class are set. These
classes are put in temporal context depending on the timestamp. The result is
the action compound which is associated with the tactic. In order to complete
the tactic, it is connected to the set of participating actors and the pre-condition
as derived from the corresponding sketch. As the descriptions contain implicit
semantics, an additional set of rules is provided to fill these semantic gaps.

4.3 Deployment

After successfully transforming the tactics descriptions into a populated ontol-
ogy, execution is rather straightforward. Before it can be deployed, though, it has



to be embedded properly into its execution environment by defining semantics
for execution. Consider the first two action stubs of the running example. Two
questions arise here: (1) what methods the agents should call when executing
the ontology action associated with each verb, and (2) when exactly player 5
should pass the ball. We thus have to (1) define how the ontology actions map
onto methods and (2) provide rules concretizing the behavior of the actions, for
example that ’come towards’ makes a player move halfways to another.
On the base of these semantics, a condition tupel {Pre-Condition, Invariant,
Post-Condition} has to be defined for each action of the compound. The pre-
condition adopts the semantics of the action defined above and in a concrete
situation thus grounds how the action has to be executed.
Synchronization can be created very naturally on the base that all executed
actions have to respect these semantics. This means that actions cannot be ex-
ecuted (stated by pre-condition) as long as actions which have to be performed
earlier in the sequence, have been finished (stated by post-condition) [Note: ex-
periments have shown that this constraint is too hard, so that additional rules
state that some actions can be performed semi-consequently]. The positions the
actions arrive at, serve as synchronization points that are expressed in the con-
ditions tupel. They are progressed on base of the action compound hierarchy
using the action semantics. The initial positions a tactic is grounded on, suffice
to calculate all further positions so all agents share this knowledge.

The actual execution is rather simple. Whenever a tactic should be performed
(checked by its pre-condition), each participating agent (grounded by the tactic’s
pre-condition) retrieves a linear plan containing only what it has to do. It then
executes this plan step-by-step while checking whether the other agents are still
committed to the mutual tactic (by invariants).

5 Experiments

In order to evaluate the concepts developed in this work, we have evaluated our
methodology for sketch recognition and interpretation as well as the transfor-
mation process from natural language descriptions to a populated ontology and
its deployment in the 2D RoboCup Simulation League.

We have conducted experiments to test various aspects of the first in previous
research which yielded promising results (details can be found in [9]). Its focus
comprised solely the transformation of sketches to a team specific plan structure.
The results demonstrate the status of our research in this direction, but are also
interesting as a sketch yields far more information than just the pre-condition
of a tactic: It provides an additional perspective on the complete tactic. In the
future, we are thus interested in fusing sketch and text knowledge to further
improve the performance of the ontology.

To demonstrate the performance of the transformation, population and de-
ployment of ontologies in RoboCup, 16 tactics descriptions (containing 129 ac-
tions) have been chosen randomly and populated automatically into the prepared
domain ontology. The ontology tactics were then compared to the original de-



scriptions. The results are that (1) 71% of all actions were identified perfectly,
(2) an additional 20% of all actions were identified well enough (that is with
few flaws which could be corrected by simple rules at execution) and (3) the
temporal sequence was adjusted correctly in all cases. Most errors left can be
explained by tagging flaws and concepts too complex to be expressed as SPO.
Post-processing and execution of the populated ontology were evaluated in sim-
ulation (without the influence of quantification). For this purpose, semantics
as described in the previous setting were created and remaining transformation
errors were corrected manually. The agents were positioned and provided with
the populated ontology. After simulation, the logs were evaluated whether the
geometric relations were as defined by the original tactic description. The results
were satisfying as well, yielding that 86% of the tactics were executed correctly.

6 Outlook

In the future, we will deploy the tactics in tournaments and complete the on-
tology lifecycle in RoboCup. Verification and improvement of the populated
ontology will thus be based on simulations: The defined semantics will be used
as model to monitor the correct execution of tactics in the environment. If an
interruption is detected, the reason is inferred from this model and the tactic
adjusted.
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