
CYRUS 2D Simulation Team
Description Paper 2017

Nader Zare1, Ali Najimi2, Mahtab Sarvmaili1,
Aryan Akbarpour3, Mohsen NaghipourFar2,

Borna Barahimi4, Amin Nikanjam1

1Dept. of Computer Engineering, Khajeh Nasir University of Technology
nader.zare88@gmail.com,

mahtab.sarvmaili@gmail.com,
nikanjam@kntu.ac.ir

2Dept. of Computer Engineering, Sharif University of Technology
najimi@ce.sharif.edu,

naghipourfar@ce.sharif.edu
3Bellerbys College Brighton

aryan.ak99@yahoo.com
4Atomic Energy High-school

bornab1379@gmail.com

Abstract. This paper includes some explanations about algorithms im-
plemented by CYRUS team members. The main objective is to express
a brief explanation about intelligent decision making of the agents. For
this purpose, first we applied deep neural network for opponents posi-
tion detection, and also de-noising and agents restricted view removal,
and second, another deep neural network were learned to find the op-
ponent team formation. These two neural networks enable our agents to
understand the opponents team formation and also improve their perfor-
mance by de-noising and removing view limitations. The base code used
by CYRUS is agent 3.1.0[1].

1 Introduction

“CYRUS“ robotic team members created this team six years ago, with the goal
of student scientific improvement in Artificial Intelligence and multi-agent field.
At first, members of this team were bachelors of Information Technology Dept. at
Shiraz University of Technology and now team members are formed of students
from Khajeh Nasir University of Technology, Sharif University of Technology,
and Atomic Energy High-school.
This team has been qualified to participate in World Competition since 2013 and
ranked 8th, 5th, 9th, 12th (CYRUS) and 8th (FURY) sequentially, Also in 2014
achieved First-place of Iran Open competition, first-place in Kordestan 2013 and
first-place in Fazasazan 2012. This team has also participated in Iran Open 2013,
Iran Open 2012, SharifCup 2012, Iran Open 2011, Sama RoboCup 2011, etc.
Presently CYRUS team members are trying to improve their efficiency by using
Machine Learning, and multi-agent algorithms.



This paper briefly represents CYRUS team structure and algorithms, e.g. op-
ponent behavior detection, and opponent team formation detection using deep
learning.

2 Opponent Behavior Detection

Some of the important aspects of 2D Soccer Simulation are noise, agents re-
stricted view, and opponents behavior detection in the context of uncertainty.
CYRUS team uses deep learning from the Robo Cup logs from 2010 to 2016 in
order to detect these behaviors.
In this section our purpose is to determine opponents next position by current
positions of our team and opponent. At the moment, learning process is only
available offline but in the future, online learning process will be added to coach.

2.1 Data-Set

Deep neural networks need large amounts of data for training, to meet this re-
quirement over 15 million data have been gathered from Robo Cup logs since
2010 to train deep neural network.
Each record consists of 144 features which 94 features of them have been consid-
ered as inputs to the neural network. Useful information of both teams and ball
position of every single cycle (assume as cycle i) are given to the neural network
as inputs, and information of the next cycle (assume as cycle i+1 ) are stated as
labels.

Inputs

Ball Left Agents Right Agents

left team id right team id
ball.pos.x leftAgent.pos.x rightAgent.pos.x
ball.pos.y leftAgent.pos.y rightAgent.pos.y
ball.vel.x leftAgent.vel.x rightAgent.vel.x
ball.vel.y leftAgent.vel.y rightAgent.vel.y

Table 1: List of inputs

Labels

Right Agents Left Agents Ball

rightAgent.pos.x leftAgent.pos.x ball.pos.x
rightAgent.pos.y leftAgent.pos.y ball.pos.y
rightAgent.vel.x leftAgent.vel.x ball.vel.x
rightAgent.vel.y leftAgent.vel.y ball.vel.y

Table 2: List of labels



2.2 Using Stacked (De-noising) Auto-Encoders[6] to Find The Best
Initial Weights

The dominant method for training deep neural networks is gradient descent.
Training deep neural network from random initialized parameters, does not work
very well, and primary layers don’t learn properly. Few algorithms work well for
this purpose. Learning layer by layer using Auto-Encoder has been implemented,
which weights each layer learns separately to have better initialization for each
individual layer so that it may learn useful feature extractors. After building the
stack of encoders, the supervised learning can be used to learn for training the
deep neural network layers. Auto-encoder sets output label of each layer equal
to input of it in order to make distinction between different data and to be noise
resistant.

Fig. 1: Comparison between Normal Neural Network and Auto-Encoder

Each layer includes respectively 200, 150, 100, 80, and 48 neurons. Methods
of achieving initial weights, will be defined.

2.3 Finding The Best Structure to Learn Neural Network

To achieve the efficient initial weights, Multi-Layer Perceptron (MLP) and Rough
neural networks have been implemented.



Fig. 2: MLP vs. Rough

Rough neural networks cleave weights into lower bound and upper bound,
then from each part of weights output will be averaged.

MLP :

Net = WX + b −→ O = f(Net)

Rough :

NetU = WU ∗X + bU NetL = WL ∗X + bL

↓ ↓
OU = max(f(NetU ), f(NetL)) OL = min(f(NetU ), f(NetL))

W2 = transpose(W1) (1)

Learn W1 and gain W2 from W1

W1 ‖ W2 (2)

Learn W1 and W2 simultaneously

W1 = transpose(W2) (3)

Learn W2 and gain W1 from W2

Equations 1 and 2 and 3 are methods to achieve efficient initial weights according
to the layer type (MLP or Rough) diagrams are shown in Fig. 3.



(a) Learn W1 MLP & Auto-Encoder (b) Learn W1 & W2 MLP & Auto-Encoder

(c) Learn W2 MLP & Auto-Encoder (d) Learn W1 Rough & Auto-Encoder

(e) Learn W1 & W2 Rough & Auto-Encoder (f) Learn W2 Rough & Auto-Encoder

Fig. 3: 6 methods of auto-encoder to gain initial weights using MLP & Rough

2.4 Learn Deep Neural Network Using Mined Initial Weights

To detect opponents next cycle behavior, a 7-layers deep neural network with
200, 150, 100, 80, 48, 48, 48 neurons sequentially were used in this algorithm
that initial weights can be assigned randomly or by using mined weights from
above methods, are shown separately in Fig. 4, and CYRUS team uses the best
result.



(a) Deep MLP with Random Weights (b) Deep MLP with W1

(c) Deep MLP with W2 (d) Deep MLP with W1 and W2

(e) Deep Rough with Random Weights (f) Deep Rough with W1

(g) Deep Rough with W2 (h) Deep Rough with W1 and W2

Fig. 4: Error charts based on total epochs



2.5 Using Deep Learning to Detect Opponents Next Cycle Behavior

Currently, CYRUS team can detect opponents next cycle behavior using defined
deep neural network, and in the future, it will detect next cycles by adding self
positions. For instance, Cycle i information will be given to the neural network
and cycle i+1 will be our result, then cycle i+1 information will be given to the
neural network and cycle i+2 will be our result. This operation will be continued
until the desired information is achieved. Table 3 shows the result of behavior
detection.

Team
Without NN With NN

Goals Scored Goals Lost Goals Scored Goals Lost

Agent2D 3.18 1.1 5.1 0.8

Random Team 2.12 1.91 2.44 1.79

Table 3: Average scores with and without neural network

3 Formation Detection

Formation is the most distinctive feature of every 2D Soccer Simulation team
and it consists of different lineups e.g. defense, midfield, and offense. CYRUS
team will form its best formation against different teams and formations using
opponents formation detection and Artificial Intelligence methods, that will be
defined, before Robo Cup.
In order to determine opponents formation, first a great data-set of 80 differ-
ent formations were created using fedit[2]. Each and every data from data-set
includes: ball position, positions of all the agents, angle and direction between
ball and every agent as inputs of the neural network and number of agents in
each line as labels of inputs. The learning process uses a 6-layer neural network
which contains 25, 80, 50, 30, 15, and 5 neurons sequentially. The initial weights
are calculated from auto-encoder method. Fig. 5 shows total error and accuracy
according to the epochs in the learning process.



(a) Accuracy According to Epochs (b) Error According to Epochs

Fig. 5: Total Error and Accuracy According to epochs

A teams formation may be different in viewpoint of person to person, it is
not possible to compare with reality, Therefor coach gathers 500 cycles of infor-
mation then gives it to neural network in two different ways:
(1) each cycles information will be given to neural network and final result will
be averaged.
(2) all information will be averaged then will be given to neural network.

1 2
Accuracy 64% 73%

Table 4: Accuracy of each method for agent2d formations

4 Future

CYRUS team members plan to enhance offense and defense system using deep
neural networks, and deep reinforcement learning. In order to achieve this goal,
CYRUS team will reprogram its defense real-time decision making using actor-
arctic deep neural network and multi-agent reinforcement learning, goalie deci-
sion making in penalty kicks using actor-arcitic multi-agent deep learning and
deep reinforcement learning, online opponents high level behavior detection us-
ing PGM and deep learning with coach.

References

1. “agent2D-3.1.0 RoboCup tools - OSDN.“ [Online]. Available: agent2D-3.1.0 . [Ac-
cessed: 22-Jan-2016].

2. “fedit2-0.0.0 RoboCup tools - OSDN.“ [Online]. Available: fedit2-0.0.0

http://en.osdn.jp/projects/rctools/downloads/51943/agent2d-3.1.0.tar.gz
https://osdn.net/projects/rctools/downloads/48791/fedit2-0.0.0.tar.gz/


3. Teshneh Lab, Mohammad, and Pouria Jafari. Neural Networks and Advanced
Neuro-Controlers, A Rough Neural Network Approach. Khajeh Nasir University
of Technology, 2015.

4. Haykin S., “Neural Networks: A Comprehensive Foundation (2 ed.)“, Prentice Hall,
1998.

5. H. Akiyama, T. Nakashima, and S. Mifune, “HELIOS2015 Team Description Pa-
per,“ pp. 16, 2015.

6. Vincent, Pascal, et al. “Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion.“ Journal of Machine
Learning Research 11.Dec (2010): 3371-3408.

7. Slotine, Jean-Jacques E., and Weiping Li. Applied nonlinear control. Vol. 60. En-
glewood Cliffs, NJ: Prentice-Hall, 1991.

8. Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic envi-
ronment . In: Visser, U., Ribeiro,F., Ohashi, T., Dellaert, F., eds.: RoboCup 2007:
Robot Soccer World Cup XI, Lecture Notes in Artificial Intelligence. Volume 5001.,
Springer (2008) 377-C384.

9. N.Zare, A.Keshavarzi, E.Beheshtian, H.Mowla, H.Jafari, “CYRUS 2D Simulation
Team Description Paper 2016“, The 20th annual RoboCup International Sympo-
sium, Germany, Leipzig, 2016.

10. N.Zare, M.Karimi, A.Keshavarzi, E.Asali, H.Alipour, A.Aminian, E.Beheshtian,
H.Mowla, H.Jafari, M.J.Khademian, “CYRUS 2D Simulation Team Description
Paper 2015“, The 19th annual RoboCup International Symposium, China, Hefei,
2015.

11. R.Khayami, N.Zare, M.karimi, P.Mahor, F.Tekara, E.Asali, A.Keshavarzi,
A.Afshar, M.Asadi, M.Najafi, “CYRUS 2D Simulation Team Description Paper
2014“, The 18th annual RoboCup International Symposium, Brazil, Joao Pessoa,
2014.

12. M. Dezfoulian, N. Kaviani, A. Nikanjam, M. Rafaee, Training a Simulated Soc-
cer Agent how to Shoot Using Artificial Neural Network, 13th Multi-disciplinary
Iranian Researchers Conference in Europe (IRCE), Leeds, UK, 2005.

13. M. Prokopenko, P. Wang, and O. Obst, “Gliders2015: Opponent avoidance with
bio-inspired flocking behaviour,“ pp. 15, 2015.

14. H. Zhang, M. Jiang, H. Dai, A. Bai, and X. Chen, “WrightEagle 2D Soccer Simu-
lation Team Description 2015,“ Wrighteagle.Org, pp. 38, 2015.

15. S. Marian, D. Luca, B. Sarac, and O. Cotarlea, “OXSY 2015 Team Description,“
2015.


	CYRUS 2D Simulation Team Description Paper 2017

