
Fifty-Storms2017: Team Description Paper

Harukazu Igarashi1, Jun Yamagishi2, and Masaharu Irikura3

Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
{1arashi50, 2al13108, 3al13013}@shibaura-it.ac.jp

Abstract. Fifty-Storms2017 team participates in the RoboCup Soccer Simula-
tion 2D League 2017. This team is based on the open-version codes of the
HELIOS team, agent2d (ver.3.1.1), and exploits the results of reinforcement
learning, where a policy gradient method derives appropriate policies for mid-
fielders and forwards. In this learning, rewards are given to soccer agents by
humans who are watching the games to modify the policies for passers and re-
ceivers.

1 Introduction

From 2005, Fifty-Storms, had participated in such domestic competitions as RoboCup
Japan Open, changed its underlying base team from UvA Trilearn 2003 [1] to the
open-version codes of HELIOS [2], called agent2d in 2008. After adding new drib-
bling skills and modifications to optimize the abilities of agent2d (ver.1.0.0), Fifty-
Storms participated in RoboCup Japan Open 2008 and narrowly lost the champion-
ship match to HELIOS.

In the following year, Fifty-Storms 2009 exploited the research results of rein-
forcement learning for the pass selection problems of midfielders (MFs) and the posi-
tioning problems for forwards (FWs) to receive a through pass [3][4]. Fifty-Storms
participated in RoboCup 2009 and finished 12th and they finished 17th the next year.

In 2010, a new decision-making algorithm for a player with the ball was added to
agent2d (ver.3.0.0). That framework for searching for action sequences is called chain
actions. Using the latest version (3.1.1) of agent2d, Fifty-Storms 2017 proposes a new
state evaluation function for chain-action algorithms and applies reinforcement learn-
ing to adjust the weight parameters in the function. In this team, not only players with
the ball but also those who will probably receive a pass can use the chain-action algo-
rithm to decide the point at which players should move to receive the ball. This team
description paper briefly details the learning method for Fifty-Storms 2017.

2 Decision Making of Agent’s behaviors

2.1 Stochastic Policy Using Tree Search

A new online multi-agent planning system was implemented in agent2d (ver.3.0.0). It
uses a tree search when a player with the ball makes a decision because a cooperative
behavior can be represented as a sequence of kick actions by multiple agents. Actions
are generated and stored as nodes of a search tree. A path from the root node to a leaf
node represents an action sequence called chain actions. All nodes are evaluated by
static functions called state evaluation functions.

In the latest version of agent2d, 3.1.1, the best-first search algorithm determines
the best path from a search tree. Fig.1 shows an example of an action-state search
tree. The numbers under the nodes are the values of the states evaluated by a state
evaluation function. In this case, the path from root node S to node Sc is selected as
the best path and the agent chooses action c at current state S.

Fig. 1 Example of a search tree

In our model, we use a stochastic policy based on the values of actions. An ac-
tion’s value is defined by the largest value of the nodes under the subtree generated by
the action. In this example, action value Ea(a) of action a is given by state value Es(Sa)
of state Sa, i.e., Ea(a)=Es(Sa)=80. In the same way, Ea(b)=Es(Sb)=30 and Ea(c)=
Es(Sc)=30. We use the following Boltzmann distribution function as a stochastic poli-
cy for an agent to determine its action:

()
()

()

()

()

()

()

;,

, ;;
s aa

a s x

E S TE a s T

E x s T E S T

x A s x A s

e ea s
e e

ω

ωπ ω

∈ ∈

≡ =
∑ ∑ , (1)

where Ea(a,s) is an action evaluation function of action a at state s and A(s) is a set of
feasible actions at s. Symbol ω denotes a set of the parameters included in state evalu-
ation function Es(Sa;ω) and T is a parameter called temperature.

2.2 Actions of Players in Possession of Ball

We used nine classes for agent actions that generate edges in the search tree (Table 1).
The first eight classes are defined in agent2d. We added a “hold” action class where a
player stays at a current position and does nothing.

Table 1 Action classes of players with ball

Acton class Play
ActGen_StrickCheckPass direct/lead/through pass
ActGen_Cross cross pass
ActGen_DirectPass direct pass
ActGen_ShortDribble short dribble
ActGen_SelfPass long dribble
ActGen_SimpleDribble simple dribble
ActGen_Shoot shoot
ActGen_hold hold and stay

2.3 Actions of Receivers

In agent2d, only players in possession of the ball make decisions using the chain-
action algorithm. Fifty-Storms 2017 forces players without the ball to use the chain-
action algorithm to choose the best position to receive a pass. For the receiver’s
movement, we define a new action class that consists of “turn” and “dash” actions.
Fig. 2 shows an example of the candidates for a receiver’s moving action. We consid-
er only search trees whose depths are one for a receiver to choose a moving point in
the chain-action algorithm.

Fig. 2 Candidates of a receiver’s moving action

3 Learning by Soccer Agents

3.1 Policy Gradient Approach to Soccer Agents

The RoboCup Simulation 2D League serves as a test bed to learn coordination in
multi-agent systems because real robots do not have to be controlled, and learning
coordinative behaviors among players can be focused on. As an example of multi-
agent learning in a soccer match, Igarashi et al. proposed and applied a policy gradi-
ent approach to realize coordination between a kicker and a receiver in direct free
kicks [4]. They dealt with learning problems between a kicker and a receiver when a

home position

circle of radius 10 [m]

direct free kick is awarded just outside the opponent’s penalty area and proposed a
function that expressed heuristics to evaluate a candidate target point for effectively
sending/receiving a pass and scoring. However, they only addressed the attacking
problems of 2v2 (two attackers and two defenders), and their base team [4] was UvA
Trilearn 2003. They applied the policy gradient approach to the pass selection prob-
lems of MFs and the positioning problems for FWs to receive a through pass and
implemented the learning results into Fifty-Storms 2009 [3].

3.2 Characteristics of Policy Gradient Method

A policy gradient method is a kind of reinforcement learning scheme that originated
from Williams’s REINFORCE algorithm [5]. This method locally increases and max-
imizes the expected reward per episode by calculating the derivatives of the expected
reward function of the parameters included in a stochastic policy function. This meth-
od, which has a firm mathematical basis, can be easily applied to many learning prob-
lems and used for them even in non-Markov Decision Processes [6][7].

The policy gradient method in refs. [4] and [7] has the following technical charac-
teristics. For autonomous action decisions and the learning of each agent, the policy
function for the entire multi-agent system was approximated by the product of each
agent’s policy function [8], defined by

{ }()
{ }()

{ }()

; , /

; , /
,

j

j

E a s T

j E a s T

a

ea s
e

λ λ λ λ

λ λ λ

ω
λ λ λ λ

ω
π ω

−

−
≡
∑

, (2)

where aλ is the action of agent λ and sλ is the state perceived by agent λ. Function Eλ in
Eq. (2) is an energy function of Boltzmann distribution function πλ and an objective
function that evaluates an action of agent λ. At the end of each learning episode σ,
common reward r (σ) is given to all agents. The derivative of the expectation of re-
ward E[r] for parameter ωλ

j can be calculated to derive the following learning rule on
ωλ

j :

() ()
() 1

0
j

L

j
t

r e t T
σ

λ λ
ωω ε σ

−

=

∆ = ⋅ ∑ , (3)

where L(s) is the length of episode σ and ε (>0) is a learning coefficient. eω are called
characteristic eligibilities [5], as shown in Eq. (4), when πλ is given by (2):

() { }() { }() { }(); , ; ,1,
j

j j
j

j j j

E a s E a s
e t a s

Tλ

λ

λ λ λ λ λ λ λ λ
λ λ λ λ

λ λ λω

π

ω ω
π ω

ω ω ω

 ∂ ∂∂  ≡ = − −
 ∂ ∂ ∂
 

, (4)

where <X>π means the expectation of X(a) with respect to stochastic variable a dis-
tributed by distribution function π.

4 Learning System in Fifty-Storms 2017

4.1 State Evaluation Function

We replaced an action evaluation function with a state evaluation function in the
agent policy in Eq. (1). Characteristic eligibilities eω in Eq. (4) are expressed as

() () () { }() () { }() () { }(); ;1,
j

s j s ja t a t
j

j j j

E S E S
e t a t s t

Tω

π

ω ω
π ω

ω ω ω

 ∂ ∂∂  ≡ = − − ∂ ∂ ∂ 
 

, (5)

where suffix λ of the agent is omitted for simplicity. State evaluation function Es(s) is
defined by a linear function of terms Uj that evaluate state s. ωj is a weight parameter
multiplied by Uj (s) in Es(s), i.e., Es(s) = -Σj ωjUj (s). The examples of Uj are terms
that evaluate the ball position, the number of safe pass courses to teammates, and the
possibilities of shots on the opponent goal if the agent gets the ball at state s. Using Uj
(s), characteristic eligibilities eω are written:

() ()() () () { }()
()

1 ,
j

x

j j x ja t
x A S

e t U S U S x s t
Tω π ω

∈

 
= −  

 
∑ . (6)

4.2 Rewards

Fifty-Storms 2017 uses the evaluation of live matches by a soccer audience as re-
wards in its online reinforcement learning. Fig. 3 shows its learning system. The
online-coach agent receives rewards evaluated by subjects who are watching a soccer
match and necessary information on state s and the Uj(s) and π(a) values from soccer
agents to calculate the right side of Eq. (6). The ∆ω values in Eq. (3), which are
necessary for updating the weight parameters, are sent to the soccer agents by the
online coach. It only takes about ten games (instead of thousands) for agents to
adequately learn plays to meet a subject’s requirements.

Fig. 3 Overview of learning system

The results of our learning experiments show that the number of goal-scoring pat-
terns after passes increased drastically and the winning rate against agent2d improved
from 52.1% to 73.2%. These results support the effectiveness of our proposed state
evaluation function and the learning algorithm for receiver agents to determine their
positions.

5 Summary

In this team description paper, we outlined the characteristics of our Fifty-Storms
team that participates in RoboCup 2D Soccer Simulation League 2017. This team is
based on an open version of the HELIOS team, agent2d (ver.3.1.1), to which modifi-
cations were added to enhance the offensive abilities of the forwards and the defend-
ers by hand coding. In addition, we exploited the results of online reinforcement
learning, where a policy gradient method derived appropriate policies for receivers as
well as other players with the ball.

References

1. UvA Trilearn 2003, http://staff.science.uva.nl/~jellekok/robocup/2003/
2. HELIOS’s URL site, http://rctools.sourceforge.jp/pukiwiki/ (in Japanese)
3. Igarashi, H., Fukuoka, H., and Ishihara, S.: Learning of Soccer Player Agents Using a Pol-

icy Gradient Method: Pass Selection, In: Proceedings of International MultiConference of
Engineers and Computer Scientists (IMECS) 2010, Vol. I, pp. 31-35 (2010).

4. Igarashi, H., Nakamura, K., and Ishihara, S.: Learning of Soccer Player Agents Using a
Policy Gradient Method: Coordination between Kicker and Receiver during Free Kicks.
In: 2008 International Joint Conference on Neural Networks (IJCNN 2008), Paper No.
NN0040, pp. 46-52 (2008).

5. Williams, R. J.: Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning. Machine Learning, vol. 8, pp. 229-256 (1992).

6. Igarashi, H., Ishihara, S., and Kimura, M.: Reinforcement Learning in Non-Markov Deci-
sion Processes-Statistical Properties of Characteristic Eligibility. IEICE Transactions on
Information and Systems, vol. J90-D, no. 9, pp. 2271-2280 (2007, in Japanese). This paper
was translated into English and included in The Research Reports of Shibaura Institute of
Technology, Natural Sciences and Engineering, vol. 52, no. 2, pp. 1-7 (2008). ISSN 0386-
3115.

7. Ishihara, S. and Igarashi, H.: Applying the Policy Gradient Method to Behavior Learning
in Multiagent Systems: The Pursuit Problem. Systems and Computers in Japan, vol. 37,
no. 10, pp. 101-109 (2006).

8. Peshkin, L., Kim, K. E., Meuleau, N., and Kaelbling, L. P.: Learning to Cooperate via Pol-
icy Search. In Proc. of 16th Conference on Uncertainty in Artificial Intelligence
(UAI2000), pp. 489-496 (2000).

http://rctools.sourceforge.jp/pukiwiki/

	1 Introduction
	2 Decision Making of Agent’s behaviors
	2.1 Stochastic Policy Using Tree Search
	2.2 Actions of Players in Possession of Ball
	2.3 Actions of Receivers

	3 Learning by Soccer Agents
	3.1 Policy Gradient Approach to Soccer Agents
	3.2 Characteristics of Policy Gradient Method

	4 Learning System in Fifty-Storms 2017
	4.1 State Evaluation Function
	4.2 Rewards

	5 Summary

