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Abstract. Fractals2019 is a new experimental entry in the RoboCup Soccer 2D
Simulation League, based on Gliders2d, which extended agent2d code base. In de-
veloping Fractals we use elements of evolutionary computation, within the frame-
work of Guided Self-Organisation. The evolution is guided by generic universal ob-
jective functions that relate information-processing and thermodynamic properties
of collective action (i.e., collective distributed computation). Tactical tasks provide
constraints on control parameters, varying which is the subject of the evolutionary
process. Examples include evolving dash power rates, levels of pressing and risk-
taking, as well as action evaluation weights, to optimise thermodynamic efficiency
of collective behaviours, in addition to standard competition performance measures.

1 Introduction

The RoboCup Soccer 2D Simulation League continues to inspire fundamental research
and development efforts in Artificial Intelligence, as well as general studies of complex
systems and self-organisation. Simulated teams created over the years have demonstrated
a number of advances in collective behaviour, which self-organises within a distributed
environment of the RoboCup Soccer Simulator (RCSS), as a result of teamwork interac-
tions and in response to opponents’ actions [1–11].

Typically, self-organisation of complex behaviours is underpinned by low-level skills
and dynamic world models of simulated autonomous agents, standardised over the years
by several important base code releases. These include CMUnited team (USA) [12], UvA
Trilearn” team (The Netherlands) [13], HELIOS team (Japan) [14], and MarliK team
(Iran) [15]. In particular, we note the release in 2010 of the base code of HELIOS team,
agent2d-3.0.0, later upgraded to agent2d-3.1.1. About 80% of the League’s teams adopted
agent2d as their base code, including our champion team, Gliders2016 [16, 11], which
also utilised fragments of MarliK source code [15].

While developing Gliders, we augmented artificial evolution with human innovation,
using Human-based Evolutionary Computation (HBEC) [17]. HBEC enabled optimisa-
tion of several components which we introduced and investigated between 2012 and 2016:
an action-dependent evaluation function [18], a particle-swarm based self-localisation
method and tactical interaction networks [19–22], dynamic tactics with Voronoi diagrams
[23], bio-inspired flocking behaviour [24], and diversified opponent modelling [16].
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The main factor which allowed Gliders to demonstrate a high tactical proficiency was
the increased mobility of players, resulting in a better control over the field. Recently, we
released the code base Gliders2d [25], version v1, with six sequential changes, from v1.1
to v1.6, mapping to six evolutionary HBEC steps (version Gliders2d-v1.0 is identical to
agent2d-3.1.1). In that release we traced improvements in the team performance, with
respect to the achieved goal difference and attained points, along the following steps:

– Gliders2d-v1.1: stamina management with higher dash power rates (less conservative
usage of the available stamina balance; strategy.cpp);

– Gliders2d-v1.2: pressing behaviour (more intense pressing of the opponents in pos-
session of the ball; bhv_basic_move.cpp);

– Gliders2d-v1.3: action-dependent evaluator (selecting more diversified actions aim-
ing to stretch the opposition most; sample_field_evaluator.cpp);

– Gliders2d-v1.4: positioning of attacking players using Voronoi diagrams (maximising
the potential of ball reachability; strategy.cpp);

– Gliders2d-v1.5: defensive formations (positioning defenders and midfielders closer
to own goal; *.conf);

– Gliders2d-v1.6: modelling risk in intercept behaviours (enabling risky passes in spe-
cific situations; strict_check_pass_generator.cpp).

As noted in [25], Gliders2d is a separate evolutionary branch, different from the (Glid-
ers2012 — Gliders2016) branch, and hence, Gliders2d-v1.6 is not a subset of any of Glid-
ers2012 — Gliders2016 teams, although it approaches the strength of Gliders2013 [19].

Fractals2019 is a new team which is partially based on Gliders2d, while retaining
some elements of the champion team Gliders2016. To a large extent, Fractals2019 is an
experimental entry, motivated by a new set of aims. Specifically, we intend to redefine
the fitness landscape used by evolutionary computation in terms of universal objective
functions, rather than in terms of the performance metrics alone. Our overall approach
attempts to achieve guided self-organisation of tactical behaviour, as described in the
next section.

2 Methodology: designing thermodynamically efficient behaviours
Typically, self-organisation is defined as the evolution of a system into an organised form
and/or functionality in the absence of external pressures. Guided Self-Organisation (GSO)
integrates two alternatives: (i) the process of self-organisation which explores the avail-
able search space (implying autonomy), and (ii) the process of designing a desirable
outcome by providing a “blueprint” (implying control) [26]. The GSO framework has
been applied to several robotic scenarios, where such an integration is proposed by (i)
setting task-independent universal objective functions, while (ii) placing task-dependent
constraints and feedbacks on the system dynamics, so that the combination implicitly
guides the resultant behaviors and interactions towards the desirable outcomes [27–35].

During self-organisation within a system, interactions among the system’s elements
produce a spontaneous increase in order. On one hand, in terms of distributed computa-
tion, the system increases its information-processing capabilities [36, 37, 21], manifested
in statistical regularities that can be observed and measured information-theoretically [38–
42]. On the other hand, in terms of thermodynamics, this increase must be balanced by
entropy production, exported to the system’s exterior [43–47].
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In the Fractals branch we identify several important control parameters, varying which
allows us to measure the universal fitness levels via order parameters. Among the con-
trol parameters which prominently feature in Gliders2d-v1.6 we note: dash power rates
used in stamina management; level of pressing (more precisely, pressure) applied to the
opponents in proximity to the ball; weight factor(s) scaling the action evaluation, as well
as players positioning, towards different sectors of the field; and level of risk taken in
considering passes. Of course, other rates and factors can be added: the important point
is that these control parameters must affect the global team behaviour, and have a suf-
ficiently broad (preferably, continuous) range, within which they may make a transition
through a critical point, separating phases with different energy profiles. Considering the
corresponding energy behaviour and the overall thermodynamics is crucial to the analysis
of phase transitions, and so we focus on how our control parameters affect the thermody-
namic balance in Fractals. In general, the control parameters may be further constrained
dependent on a specific task (e.g., defensive play, offside trap, free-kicks, and so on).

On the other hand, the order parameters are chosen to represent task-independent ob-
jectives: maximisation of spatiotemporal coordination [28, 29], maximisation of informa-
tion flows [22, 42], maximisation of thermodynamic efficiency [47], etc. In particular, we
focus on thermodynamic efficiency of collective computation defined, for a given value
of the control parameter, as the ratio of the generated order (i.e., the reduction of uncer-
tainty, measured as Shannon information) to the required thermodynamic work. The latter
is closely related to the sensitivity of collective computation, measured as Fisher informa-
tion [47]. For example, the collective motion (which is a result of distributed computation)
may undergo a transition from a disordered to a coherent phase in response to changes
in the number of nearest neighbours affecting an individual’s alignment. The reduction
in uncertainty (derivative of Shannon information) and the cumulative sensitivity (inte-
grated Fisher information) are balanced in both disordered and coherent phases, so that
their ratio, i.e., the thermodynamic efficiency, is steady. However, during a kinetic phase
transition, or in other words, at the critical point, this balance is broken and the thermo-
dynamic efficiency abruptly increases.

Evolving control parameters to critical points, where the order parameters approach
the “edge of chaos”, is the main goal of the Fractals team, designed within a GSO frame-
work. Our conjecture is that at such critical regimes the resultant tactical behaviour is the
most complex and diverse, and therefore, the most challenging for the opponents. In other
words, we aim to evolve the behaviours that maximise the thermodynamic efficiency of
collective computation underlying the teamwork.

3 Conclusions

Team Fractals2019 is based on recently released Gliders2d code base [25], built up on
agent2d-3.1.1 [14]. Its development follows the methodology of Guided Self-Organisation
in an attempt to evolve strong tactical performance, described by universal objective func-
tions and restricted by task-dependent constraints. The primary universal objective that we
consider is the thermodynamic efficiency of collective action, where the latter is seen, in
the most generic sense, as collective distributed computation. For a specific value of a
control parameter (e.g., dash power rate, risk level, and so on), the thermodynamic effi-
ciency relates the reduction of uncertainty, measured by changes in Shannon information,
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to the expenditure of thermodynamic work, measured by integrated Fisher information
[47]. Fractals2019 is an experimental entry aimed to verify the extent of applicability of
the GSO approach, set specifically in terms of contrasting information-processing and
thermodynamic factors, to RoboCup simulation.
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