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Abstract. Receptivity is a new team for Robocup 2019 in the 2D sim-
ulation league. It is based on agent2d-3.1.1 and the recently released
Gliders2d. The strategic focus of the team is on improving the evaluation
function with machine learning and reinforcement learning techniques.
In particular, fine tuning of the agent decision can be made by identify-
ing situations where the intended action was not successfully completed
and instead led to negative outcomes such as loss of ball possession. This
paper outlines the process of learning and evaluation for decision fine
tuning.

1 Introduction

The RoboCup 2D Simulation League abstracts away physical difficulties to focus
on building higher level collective intelligence – such as cooperation, team mo-
bility and field control. As such, it demonstrates more advanced tactical decision
making than the other Robocup leagues [1]. This is partially due to standard-
isation of well developed basic functionality, including the agent2d base code
released by HELIOS team [2] and subsequently adopted by over 80% of the
League’s teams [3]. The competitive focus thus shifted towards a great diversity
of tactics that can take advantage of chained actions and adapt to different oppo-
nents [4–7]. However, such diversity coupled with the heterogenous player types
makes effective evaluation of the best action difficult and provides opportunities
for improvement of the evaluation algorithm.

Receptivity is a new team for the Robocup 2D soccer simulator [8], written in
C++ and based on both agent2d [2] and Gliders2d, which is a recently released
extension of agent2d [9]. Gliders2d provides improvements in six targeted areas
using the technique of human-based evolutionary computing [10], including ac-
tion based evaluation and improved team positioning. Other software packages
used are:

– librcsc base library

– soccerwindow2 for viewing and debugging games

– Tensorflow and Eigen for learning and evaluation of the neural network
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2 Action Selection and Evaluation

Agent actions (for example a pass or dribble to a particular target) are executed
over several cycles and composed of simple components, including the kick, turn
and dash [11]. Agent2d utilises a two step decision making process for selecting
actions: first generating a list of discretised candidate actions and then selecting
out of these options using an evaluation function which returns a real value score.
Although the basic agent2d evaluation function is quite simple, consisting pri-
marily of measuring the distance to the enemy goal, this can be easily extended
to consider multiple components and take account of different situations and op-
ponents. Action dependent evaluation functions were utilised in Gliders2012 [7]
and included in Gliders2d [9]. These more complicated evaluation functions can
be an important component of improved performance, however they increase
the chance that an incorrect assessment is made in certain circumstances. In
addition, because of the extended execution time, opponent actions, heteroge-
neous agent properties, inaccuracies in world modelling and noisy input, actions
may not complete as intended. This makes it a use-case for the data mining
capabilities of a neural network.

This study develops a method for fine turning the agent decision making
process by logging the actions which take place over many games, training a
neural network model to detect bad outcomes and integrating this model into the
agent code to modify future decisions. The focus here is placed on identifying bad
dribbles, which are defined as those which may be intercepted by the opponent
before successful completion.

The aim is to implement fine tuning at one level above any existing decision
making infrastructure. This hybrid approach does not seek to replace a hand
crafted evaluation function which can tuned using a variety of objectives such as
maximisation of information flow [12]. These information theoretic measures [13,
14] capture emergent patterns [15–17] which may be difficult to learn based on
the experience of each individual agent. Having a hybrid approach makes it
different from reinforcement learning methodologies such as the team-partioned,
opaque-transition reinforcement learning (TPOT-RL) developed in [18] which
learns an appropriate evaluation function from scratch starting from random
actions.

3 Data Collection

Each action is treated as a one step episode with the start point at the selection
of the action and the end point either when the full action is completed or the
action is cancelled. Logging the action and state dependent variables at the start
and end of these episodes provides three options:

– Visual exploration of the parameters leading to different outcomes, allow-
ing a greater understanding of potential weakness when facing each specific
opponent and highlighting areas that need tactical improvement. These in-
sights may be manually incorporated into improvement to the evaluation
function.
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– Identification of bad actions as a binary classification task. These, like the
bad dribbles defined earlier, are cases when the action did not complete as
intended and so should not have been selected by the evaluation function.

– Improved estimation of evaluation score by comparison of the initial real
valued evaluation and the outcome at the end of the episode. This is compa-
rable to off policy Q learning [19] which utilises the existing action generator
and evaluation function to improve the intractable dimensionality of the
action-state space.

4 Exploring Decision Outcomes

We can explore the logged data to find identifiable signatures of bad actions.
Figure 1 plots out heatmaps of three attributes logged over 4000 games. When
comparing cases of bad dribbles against all dribbles in these attributes a differ-
ence can be easily observed. This information can be used by the neural network
(which acts as universal function approximators [20]) to classify these bad ac-
tions.

5 Performance of Learning Model

A neural network is learnt offline using Tensorflow in Python and the weights
are integrated into the agent code using the C++ matrix library Eigen. Eigen
is written entirely within header files, which makes it very simple to link to
and compile. This is simpler using Tensorflow in C++, which required either re-
placing the existing GNU Make process with Bazel (Tensorflow’s recommended
option) or creating a shared Tensorflow library. The latter was successfully tested
by FRA-UNIted [21] and has the benefit of greater flexibility of model architec-
ture and usage.

The current model is able to achieve a test set prediction accuracy of between
90 and 98% and able to improve the goal scoring performance of the team.
This accuracy was achieved using a combination of techniques including dropout
regularisation [22], batch normalisation [23] and loss functions which are resistant
to signal noise [24].

Batch normalisation was found to be effective in reducing overfitting at high
epochs. It performs scaling and centring of the output of each layer using the
mean and standard deviation of each training batch. Two learnable parameters
γ and β allows the network to easily undo this operation if it is beneficial [25].
Using batch normalisation accelerates the training process by reducing internal
covariant shift and stabilising the gradient landscape [23].

Loss functions which are robust to noise were used because each agent’s
sensors are inherently noisy due to the properties of the SoccerServer. The cauchy
loss function (Eq. 1) and the correntropy loss function (Eq. 2) [24] were tested.

`(X,Y, h) = ln

(
1 +

(
Y − h(X)

γ

)2)
(1)
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All dribbles Bad dribbles

Current ball position

All dribbles Bad dribbles

Position of target relative to current position

All dribbles Bad dribbles

Position of nearest opponent relative to self

Fig. 1. Heatmaps comparing three attributes in cases of all dribbles versus bad dribbles



Receptivity TDP 2018 5

`(X,Y, h) = 1 − exp

(
−

(
Y − h(X)

σ

)2)
(2)

An important consideration when trying to predict bad actions as a binary
classification task is the imbalance of training examples. For example, bad drib-
bles may only occur in 1-5% of dribble cases, so it is difficult to make efficient use
of all gathered training data without biasing the prediction outcome. Measures
such as the F1 score may also help in evaluating network performance [26].

6 Conclusion and Future Work

Receptivity aims to improve the agent’s decision evaluation capabilities using
machine learning. For example, by identifying situations where actions are not
completed as intended it can fine tuning the decision outcome. While the focus
is currently on one step episodes, the future aim will be to extend these look
further into the future. There is also still work to be done in finding the best way
of using the information from the neural network without disrupting complex
multi-step, multi-agent behaviour. In the case of dribbles, some of them may
carry high risk of being intercepted by the enemy and classified as a bad action,
but these risks may be critical in scoring important goals.
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