
RobôCIn Team Description Paper 2019

Cristiano Santos de Oliveira, Lucas Vinicius da Costa Santana,
Mateus Gonçalces Machado, Marvson Allan Pontes de Assis,

Walber de Macedo Rodrigues, Edna Natividade da Silva Barros,
Tsang Ing Ren, and Paulo Salgado Gomes de Mattos Neto

robocin@cin.ufpe.br

February 17, 2019

Abstract. RobôCIn Soccer Simulation 2D team started in 2018 at
the Universidade Federal de Pernambuco. Our first competition was at
João Pessoa, Paráıba, Brazil in Latin American Robotics Competition
(LARC) 2018 where we obtained the 4th place against teams from Latin
America. In this paper we describe some of the approaches that we are
currently developing for our second year of research in the category,
focusing our studies on the use of Deep Reinforcement Learning and
Statistical Methods for decision making in the agents’ chain action.

1 Introduction

RobôCIn is a robotic research team from the Centro de Informática, Univer-
sidade Federal de Pernambuco, created in 2015 to participate in competitions
and research subjects related to robotics.We are currently working in four cate-
gories: Very Small Size (VSS) since 2015, Soccer Simulation 2D (SS2D), @Home
and Small Size categories since 2018. On our first time competing on SS2D, we
obtained the 4th place on Latin American Robotics Competition (LARC), de-
veloping a strong and competitive agent in Brazil and Latin America. We based
our code on agent2d 3.1.1 [1], since it is a well-structured base and from it, we
could develop our studies and approaches more quickly.

2 Deep Reinforcement Learning Strategies to Intercept
the Ball

We based our strategies on similar approaches of other teams. Similarly to
FRA-UNIted2017 [2], we decided to use a Reinforcement Learning approach
but using to improve the accuracy of the ball interception. CYRUS2018 [3]
did a similar procedure predicting players positions and then intercepting it or
marking. FRA-UNIted2018 [4] and CYRUS2018 both used Neural Networks
approaches. We also used C++ Neural Networks frameworks and training re-
sults based on their decisions.

1

mailto:robocin@cin.ufpe.br


2

2.1 Prioritized Experience Replay

Prioritized Experience Replay (PER) [5] is a strategy which assumes that some
transitions are more important than others in terms of learning. We cannot infer
from the usual Memory that, for example, walking is more important than
running when we are children. Our human memory works more likely as PER.
The sampling of a PER memory is done with a biased (priority) probabilistic
model. Doing so, our model prefer to learn from states that do not fit well the
next values, because these states are the ones to learn the main objective.

2.2 Dueling Double Deep Q Networks

The main idea of Dueling Double Deep Q Networks (DDDQNs) [6] is to
decompose the Deep Q Network’s Q-value (DQN)[7] to “how good is to be on
that state” and “how good is to take that action at that state”, resulting on
Eq. 1. V(s) represents the value of the state and A(s, a) is the value of the
action at that state.

Decomposing the predicts, the network can learn which states are valuable
or not without predicting the impact of an action on each state. However, if
only considering Eq. 1, the model will fall into the issue of identifiability, that
is, given Q(s,a) it cannot predict A(s,a) and V(s). Ziyu Wang et al. proposed
to subtract the advantage of action with the average advantage of all possi-
ble actions given a state, resulting on Eq. 2, where θ is the common network
parameters, α is the advantage stream parameters and β is the value stream
parameters.

Q(s, a) = A(s, a) + V (s) (1)

Q(s, a; θ, α, β) = V (s; θ, β) + (A(s, a; θ, α) −A−1 ∗
∑
a′

A(s, a′; θ, α)) (2)

3 Ball Possession Algorithm (BPA)

We developed a ball possession algorithm that acts among the agents in order
to maintain possession of the ball with our team. Following the teams [8], [9],
and [10], which changed the way how the agents evaluate the decisions to score
a goal, we change the evaluation to increase our ball possession. To achieve this,
we evaluated the chain of actions in order to select the actions that have a lower
probability of losing the possession of the ball. To create such algorithm, it is
necessary to have a dataset with information about the player’s surroundings,
the actions that the player performed with the ball and the outcome of these
actions.

3.1 Generating the Data Base

The approach used was modifying the agent code to extract the surroundings,
the actions followed and the outcome. This is done by adding code to our
Standard agent and playing three times with other teams. We selected the



3

first and second places from Robocup of 2018, 2017 and the agent2d itself. An
action has 2 possible outcomes, we still have the ball, counting 70 points, or
we do not have the ball, counting -100, evaluating after ten cycles if the player
does not have the ball. The player surroundings have information about how
many opponents are near, how many teammates and which area the player is
in, following the division described in [11].

3.2 Statistical Method

To increases the ball possession, we developed an algorithm that statistically
finds the best action. Composed of a set of Path Trees, represented in Figure
1, each path in the tree have an expected outcome, statistically learned from
the dataset.

The algorithm subdivides the dataset information into clusters using k-
means and the elbow method to estimate the number of clusters. We selected
13 clusters to divide the dataset. Each cluster has one specific Path Tree. One
Path Tree has a set of actions, represented by Action A and B if followed results
in a different state with another set of actions. The player generates candidate
paths, and the algorithm returns the expected outcome value to the paths, so
the player selects the path with the best outcome.

However, if the agent is in an entirely new situation, there is no information
about how it must proceed. This situation is shown in Figure 1 as “X” marks
under some actions, showing that the tree does not have information in that
direction. We handled this issue by using the basic agent2d field evaluator to
find the action, which is not optimal. Another issue is the lack of information
about some states, leading to a biased and possibly wrongly decision. To man-
age this issue, we used supervised learning to classify if an action, in certain
conditions, can lead to the loss of ball possession or not.

Fig. 1: Path Tree for ball possession algorithm. X indicates no further path
when following this action. Each action in the tree have an expected outcome,
this helps the agent to keep the ball possession.

4 RoboCup Soccer Simulation Server

Robocup Soccer Simulation Server (RCSSS) is the core of SS2D which process
the environment, making all the necessary modifications according to the game



4

dynamic in real time. Also, it establishes the communication between partici-
pating teams, that can receive the environmental information and perform the
agent’s actions, and the communication with monitors, from which one can
watch the game. RCSSS follows a client-server style, which allows teams to
develop on any platform, as long as it can perform UDP/IP communication.
Each team has the right to build 12 clients that exchange messages with the
server, having 11 players (10 fielders + 1 goalie) and the coach, where each runs
a separate process and communicate with the server through a specific port.

After initiating the connection with the clients, the server sends the initial
parameters of the game. They are the server-params and the players-params
(this one is to the teams selected from the random heterogeneous players). Each
client performs a function and has related constraints, like the fielders that
receive local information captured by the aural sensor and vision sensor and
send requisitions of the actions they want to take. The goalie that has actions
only he can take (e.g., the catch function), the coach who is a privileged client
that can be used to make strategies communicating with the players and game
analysis.

An important feature of the server is the discrete division of time (cy-
cle) because the action of each client is executed per cycle that has a specific
time duration. The developer should consider this since it can lose cycles if
it does not perform well. For the developer there are some server operating
parameters that can be used to help during development, e.g., running with
server::synch mode=on speeds up the execution and synchronize with others
server parameters of the game which combined with the server::auto mode=on
that executes the kickOff automatically, it could be written a script that exe-
cutes several games automatically.

5 Experiments and Results

5.1 Deep Reinforcement Learning Strategies to Intercept the Ball

We used the Half Field Offensive (HFO) Environment [12] to test a defensive
agent. In this experiment we coded an agent, an Non-Player Character (NPC)
goalie using agent2d and an offensive NPC built with HELIOS 2013 [13]. We
used the High Level Features set given by the HFO environment to produce
our states and actions. As actions, we defined only two: Move (the agent goes
to the point given by formation.conf) and Go To Ball (the agent intercepts the
ball and tries a Tackle).

For the agent itself, we modified a code example of [12] to train three neural
networks: DQN, DQN with PER and DDDQNs with PER. We used Stacked
States only on modules with PER.

When testing, DDQNs obtained 89% of Succeed Defenses while DQN and
DQN-PEN obtained 43% and 51% respectively for 100K memory. The larger
the memory capacity, more episodes is necessary to converge due to the loss
of the initial generated memory, which is the reward itself. So, using a 1Mi
Memory we got a DDQNs model with 71% Succeed Defenses. With time, the
model that uses 1Mi of memory should obtain a better intercept accuracy than
100K memory model. Compare the training flows, Fig. 2a and Fig. 2b.



5

Also, we noticed that agent’s positioning is very important for the model to
converge faster. We trained with the agent2d basic formation, and it was not
converging due to the distance to the ball. Then we made a more aggressive
formation that fitted better so that the agent tended to push the offensive NPC
to the sides of the field, once it is far from the goal.

(a) DDDQNs-PER, DQN-PER, DQN
are respectively blue, green and orange
curves.

(b) DDDQNs-PER, DQN-PER are respec-
tively blue and orange curves.

Fig. 2: Training flow for 10K and 50K Episodes models for 100K and 1Mi sized
memory respectively

5.2 Ball Possession Algorithm (BPA)

The BPA test setup is simple, and we compared our code used at LARC 2018
(Standard) with and without BPA. The two teams played ten times against
the latest agent2d version, 3.1.1. It is important to notice that our evaluation
counts only the ball possession ratio, discarding goals, the number of passes
and stamina used.

Team 1 2 3 4 5 6 7 8 9 10
Mean
(std)

BPA 67.03 59.19 56.14 61.84 46.43 86.82 79.59 92.52 86.05 87.66
72.32
(15.28)

Standard 58.78 49.10 51.10 49.37 45.60 41.79 58.45 52.76 45.44 51.64
50.40
(5.16)

Table 1: BPA versus Standard team, compared each possession at each game,
followed by mean (standard deviation). These distributions have p = 0.0051 in
Wilcoxon test. In bold, the best result of each.

Table 1 shows the ball possession for each game and the final mean and
standard deviation of our tests. Ball possession extracted using [14], then we
calculated the mean, standard deviation and used the Wilcoxon test to evaluate
the distribution. Using our Standard code against the agent2d, with BPA we
increased from 50.40% and 5.16 standard deviation to 72.32% of possession,
with 15.28 of standard deviation. The p value of Wilcoxon test gives us 0.0051,
confirming that there is a different distribution, considering α of 0.1 and 0.05.



6

6 Conclusions and Future Work

This paper describes some of the approaches developed by our team in our
first year in the SS2D category, focusing the efforts to build ball interception
strategies using deep reinforcement learning. We obtained relevant preliminary
results, and in decision making for greater ball possession using what we call
BPA. In addition, we developed frameworks of data extraction, but we want
to build a software that is more comprehensive in this area and give more
flexibility to those who need to mine the logs generated by the server, we
expected to finish it prior to the competition. Also for the future work, we will
try to improve these approaches using deep learning and increase agent action
by using supervised learning to choose the best action on the BPA and making
predictions of opponent’s moves.

References

1. Robocup tools agent2d. https://pt.osdn.net/projects/rctools/. Accessed:
2019-01-01.

2. Thomas Gabel, Steffen Breuer, Constantin Roser, Roman Berneburg, and Eicke
Godehardt. Fra-united — team description 2017. 2017.

3. Nader Zare, Mohsen Sadeghipour, Ashkan Keshavarzi, Mahtab Sarvmeili, Mo-
hammad Abolnejad, Arad Firouzkoohi, Reza Aghayari, Amin Nikanjam, Amin
Akhgari, and Sina Elahimanesh. Cyrus 2d simulation team description paper
2018. 2018.

4. Thomas Gabel, Philipp Kloppner, and Eicke Godehardt. Fra-united — team
description 2018. 2017.

5. Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized ex-
perience replay. CoRR, abs/1511.05952, 2015.

6. Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures
for deep reinforcement learning. CoRR, abs/1511.06581, 2015.

7. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

8. Tomoharu Nakashima, Hidehisa Akiyama, Yudai Suzuki, An Ohori, and Takuya
Fukushima. Helios2017: Team description paper. 2017.

9. Tomoharu Nakashima, Hidehisa Akiyama, Yudai Suzuki, An Ohori, and Takuya
Fukushima. Helios2018: Team description paper. In RoboCup 2018 Symposium
and Competitions: Team Description Papers, Montreal, Canada, 2018.

10. Masataka Mizumoto, Tsubasa Fuzimitsu, Takashi Ebara, Seiya Yamamoto, Hi-
roto Asai, Akira Ishida, Shosaku Inoue, Hiroaki Oe, Yudai Kawakami, Taku Ki-
tamura, et al. Robocup 2017-2d soccer simulation league team.

11. Herinson B. Rodrigues. robocup2d-tutorial. https://github.com/herodrigues/
robocup2d-tutorial/blob/master/sections/Strategy.md, 2016.

12. Half field offense. http://www.cs.utexas.edu/~AustinVilla/sim/

halffieldoffense/. Accessed: 2019-01-01.
13. Helios 2013. https://archive.robocup.info/Soccer/Simulation/2D/

binaries/RoboCup/2013/HELIOS_SS2D_RC2013_BIN.tar.gz. Accessed: 2019-01-
01.

14. KN2C Robotics Lab. Rcssanalyzer. https://github.com/dark-0ne/

RcssAnalyzer, 2018.

https://pt.osdn.net/projects/rctools/
https://github.com/herodrigues/robocup2d-tutorial/blob/master/sections/Strategy.md
https://github.com/herodrigues/robocup2d-tutorial/blob/master/sections/Strategy.md
http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/
http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/
https://archive.robocup.info/Soccer/Simulation/2D/binaries/RoboCup/2013/HELIOS_SS2D_RC2013_BIN.tar.gz
https://archive.robocup.info/Soccer/Simulation/2D/binaries/RoboCup/2013/HELIOS_SS2D_RC2013_BIN.tar.gz
https://github.com/dark-0ne/RcssAnalyzer
https://github.com/dark-0ne/RcssAnalyzer

	Introduction
	Deep Reinforcement Learning Strategies to Intercept the Ball
	Prioritized Experience Replay
	Dueling Double Deep Q Networks

	Ball Possession Algorithm (BPA)
	Generating the Data Base
	Statistical Method

	RoboCup Soccer Simulation Server
	Experiments and Results
	Deep Reinforcement Learning Strategies to Intercept the Ball
	Ball Possession Algorithm (BPA)

	Conclusions and Future Work

