
Development of a Optimization Assistance Tool for 3D Simulation
League

Marco A. C. Simões1 Claudia Elizabete Emmanuel Argollo1 Mateus Nascimento Sergio Souza Jr1

Wellington Santos1 Josemar Souza1

A well developed team for the 3D Simulation league
uses a wide variety of motion behaviors to execute complex
strategies during a match. While the behaviors are developed
either with a mathematical dynamic model or a sequence of
static poses to be executed, the initial movement parameters
to perform the behavior are defined mostly empirically. In
order to fine tune these parameters, to achieve an optimal
version of the behavior, the team must employ an optimiza-
tion algorithm.

The process of optimizing a behavior consists of determi-
ning the desired parameters for the optimization, developing
a situation for the team to execute the behavior, and creating
a fitness function to evaluate how well was the execution of
said behavior. The optimization algorithm is then responsible
for using the fitness value along with the tested parameters
to generate a new set of parameters, in order to find a better
fitness value. This execution is then performed in a loop until
it reaches an acceptable value.

With this generic optimization cycle in mind, we decided
to create a tool with which we could easily create optimi-
zation scenarios and run the optimization loop. To do so
we used the MagmaChallengeBenchmark [1], developed by
the Magma Offenburg team as the basis for our tool, as it
can be easily used to create scenarios for the optimization
and attribute its fitness value. As for the optimization we
decided to create this tool initially with the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES)[2], as it
could later be used to perform the optimization in parallel.
Previous researches have also found this algorithm to be
efficient in a setup similar to ours[3].

With these two processes, the tool to perform the tests,
and the optimization algorithm to generate new parameters,
we modified them using a simple pipe file as the interface
between them. Starting with the CMA-ES, it would generate
a determined amount of sets of parameters, as a population,
which would be tested by the modified challenge tool, that
would write the fitness results to a file, to be read by CMA-
ES, continuing the loop. The tool GUI can be seen in figure
1 an its process can be seen in the figure 2.

Then, in order to decrease the optimization time, we mo-
dified the testing tool to be able to perform the optimization
in parallel. The CMA-ES side of the optimization would run
the same way as before, however, the testing tool would be
run as multiple processes, following a master slave paradigm.

1ACSO, DCET-I, UNEB, Salvador, BA, Brazil.
teambahiart@gmail.com

Fig. 1. Optimization Tool GUI

Fig. 2. Optimization proccess with tool

The master process would divide the population among the
slaves, which would run individual tests in parallel, and then
return the fitness to the master, that would order the results
into the file to be read by CMA-ES.

REFERENCES

[1] K. Dorer, J. Fischer, S. Glaser, D. Nguyen, M. Obrecht, and D. Weiler,
“The magmaoffenburg 2016 robocup 3d simulation team,” in Procee-
dings of RoboCup 2016, 2016.

[2] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary computation, vol. 9,
no. 2, pp. 159–195, 2001.

[3] D. Urieli, P. MacAlpine, S. Kalyanakrishnan, Y. Bentor, and P. Stone,
“On optimizing interdependent skills: A case study in simulated 3d
humanoid robot soccer,” in The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2. International
Foundation for Autonomous Agents and Multiagent Systems, 2011, pp.
769–776.


