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Abstract. In our current teams Bold Hearts 2004 (2D and 3D), we seek to fur-
ther the development of the SIVE method used in Bold Hearts 2003 to learn
skills. The ultimate goal is to develop a methodology that will allow agents to
learn interpreting sensors, generating actions, then skills and ultimately tactics
and strategies from basic principles with little prior knowledge.

1 Introduction

Many approaches to construct powerful RoboCup agents concentrate on creating spe-
cific skills and capabilities. These are often constructed with knowledge about specific
properties of the world physics as simulated by the soccer server. Use of explicit knowl-
edge in agents, however, limits the flexibility and robustness of the approach should the
simulated world change and it makes it difficult to generalize to other fields. In addi-
tion, the capability of learning is one of the key questions in Artificial Intelligence, and
it would thus be desirable to address this question in the RoboCup context.

Learning has been part of the RoboCup endeavour for a long time [11, 12], in
particular in combination with reinforcement learning [1, 9]. As we argued in [3], re-
inforcement learning methods are attractive for learning approaches because they are
highly general, mathematically accessible and well understood. This generality, how-
ever, comes at a price. In large search spaces, the learning algorithms are slow and
their robustness and generalizability is not well controlled. To alleviate that, dedicated
decompositions of the representation of the state space have to be performed that decon-
struct the task hierarchically into manageable parts [2]. Still, a large number of learning
steps has to be taken to learn a more complex task. In addition, convergence problems
can arise in continuous domains (as RoboCup) [13].

In [3], we suggested a different different approach. We introduced SIVE, which
was inspired by many different sources. Its original motivation stems from the obser-
vation that humans are able to attain a much steeper learning performance than com-
puters when faced with a new task. As mentioned in [3], when facing an autonomous
agent team, a human team playing with the OpenZeng interface at the GermanOpen
2001, while being technically and tactically inferior, showed a rapidly improving per-
formance.



This, although the human accuracy in estimating ball position and performing ac-
tions was nowhere as accurate as that of the autonomous team. This is a clear indication
that the “exhaustive learning” character exhibited by typical learning algorithms is inad-
equate to obtain the directedness and generalization power that we find in human learn-
ing. In SIVE, we desire to mimic some of the properties exhibited by human learning:
extremely fast generalization and adaptation, “holistic” learning and the capability to
combine skills. For this purpose, the SIVE method has been introduced that combines
ideas and approaches from different areas. It has first been used in Bold Hearts 2003
to train the passing skill. In this year’s teams, we will develop the SIVE methodology
further, for two purposes:

1. to build up fundamental skills for the new 3D Bold Hearts team and
2. to further develop the skills for the 2D Bold Hearts team.

2 The SIVE framework

2.1 SIVE recapitulation

We will briefly recapitulate SIVE (for more details, see [4]). There are several important
ideas in SIVE:

1. train specific skills as opposed to specific tasks;
2. skills are successively combined to attain goals;
3. skills are learnt in a “holistic” fashion, as complete patterns, unlike in Reinforce-

ment Learning, where they are split up into time slices;
4. training concentrates on the limits of capabilities, i.e. cases where a there is a degree

of uncertainty whether a particular goal can or can not be attained are probed in
particular detail. Cases where the prediction certainty is high, will not be analyzed
in same detail;

5. while different heuristics may be used in implementing the actual pattern learn-
ing (e.g. Self-Organizing Maps or Support Vector Machines), the philosophy of
SIVE is information-theoretical. The guiding principles are the separation of fac-
tors of influence and of invariance. These principles have been formulated in terms
of information-theoretic criteria [4]

2.2 Earlier Work

The SIVE method is inspired by many different sources. Although motivated by clas-
sical reinforcement learning [13, 17], it does not follow the standard paradigm of time
partitioning and thus sequences of actions into equally distributed intervals; in fact, even
reinforcement learning models with continuous time [16] still do structure time. So do
approaches for analysis that make use of the temporal structure of a behaviour [18].

SIVE does not do that. Instead, it captures the whole behaviour sequence as a whole,
classifying that behaviour according to its outcome, e.g. success or failure, respectively.
This (external) classification can be considered a minimal reinforcement, or else, anal-
ogous to a classification problem. While the support vector machine formalism [5, 15]



would have provided a transparent approach to solve such a classification problem, for
a number of conceptual reasons it was decided to develop the approach itself closely
guided by information-theoretical perspectives, reducing the support vector machine
formalism to a usable heuristics that can be replaced by other mechanisms for this pur-
pose. It should be mentioned that the structural risk minimization propagated in [15] has
information-theoretic ramifications; among those, the VC dimension is obtained from
the size of the space of the possible classificator configurations. The SIVE framework
was furthermore inspired by the explicit model to compute an optimal scoring strategy
developed in [8], though it strives to significantly more generality.

Although the concrete implementation may resort to heuristical approaches, like
Self-Organizing Maps and Support Vector Machines, these are incidental; central as-
pects of SIVE are to be viewed in the an information-theoretic framework. In [10], it
was shown that purely information-theoretic measures are sufficient to reconstruct the
sensoric structure of an agent (an AIBO, in this case) without any prior knowledge on
the structure of the sensoric space.

In [6], agent behaviour is constructed by optimizing information-theoretic criteria,
in particular certain types of information flow. From these optimizations, a variety of
behaviours can be constructed in a way that is largely independent of the concrete sce-
nario.

2.3 The SIVE Method: Extensions

Introduction In Sec. 2.1, we gave a brief overview over the SIVE methodology. We
will not go into the SIVE method in detail, but we will repeat some of the issues from
[3] that are relevant for the Bold Hearts 2004 teams. It should be mentioned that below
explanation is not intended to be self-contained, but only for getting an outline of the
idea. For a full explanation, we refer to aforementioned reference.

The SIVE method incorporates several aspects. It consists of training individual
skills in explicitly given scenarios which correspond to scenarios set up by coaches for
human teams. Behaviours are trained by classifying the overall outcomes and the train-
ing concentrates on critical (risky) behaviours, where the outcome can not be predicted
safely. Finally, a representation is sought for the behaviours that attempts to capture
the properties that affect the outcome of a behaviour the most and those that affect it
the least. We illustrate SIVE in the concrete setting of a particular RoboCup scenario,
although it is by no means limited to neither this scenario, nor to RoboCup and will be
applied elsewhere.

Classification and Critical Cases As opposed to classical reinforcement learning,
SIVE distinguishes the two cases of capture and loss, but does not a priori attribute
utilities to the cases, as classical MDP learning methods. Thus, this enables considering
different types of situations using the same framework. E.g., capturing the ball may be
considered “success” if the catcher is our team mate or “failure” if the catcher is our
opponent.

Another aspect of SIVE is that only “critical” (“interesting”, “risky”) behaviours are
considered. E.g., in our scenario, SIVE ignores kicks where the ball is always captured



or always lost by the catcher. Instead, SIVE concentrates on kicks where the outcome
(capture or loss) cannot be safely predicted. By concentrating the actions on the critical
region, SIVE aims at establishing the boundary between the different outcome classes.
As opposed to classical classification methods, SIVE exploits the fact that the agent can
actively probe the critical regions and does not have to restrict itself to a given sample
of training data.

Variants and Invariants On this set of critical behaviours, SIVE proceeds to find ad-
ditional structure. To be able to generalize, it is useful to know which are the parameters
that most predictive for the outcome of an action (variants) and which are most insen-
sitive to that outcome (invariants). The variants tell the agent which aspect of an action
is most important for achieving a particular outcome. Note that the invariants are of
specific interest for the SIVE method. Without being able to presently go into more
detail in the present team description, it should be noted that they contain important
additional information about the structure of the problem that can be used to compress
information attained in one context to be used in a different context.

Given a set of “critical” data modeled by a random variable
�

and its outcome class
modeled by a random variable � , the variants and invariants are obtained by seeking
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(independence) (4)

The information preservation property requires that the transformation will not lose
any information about the structure of the original data. The variant property requires
that the transformation identifies a variant parameter

� � which is as predictive about the
outcome of the action as the original data. The invariant property separates an invariant
parameter

� � which is completely insensitive to the outcome. Finally, the variant and
invariant are to be completely independent to remove redundancies.

It cannot be expected that in a real-world constellation all these properties be ful-
filled or even a suitable transformation be practically identifiable. So, for a practical
application the equations (1)-(4) are to be modified as to seek a transformation that
maximizes the left-hand side of (1) and (2) and minimizes the left-hand side of (3) and
(4). Since

�
is in general a continuous-valued variable, for the maximization of (1) to

make sense, a suitable normalization of the transformation (e.g. fixed variance) has to
be assumed.

Even in the form of an optimization task it is often still not possible to fulfil all
the properties at once. There are different possible approaches to solve that problem.
One way is to formulate a Lagrangian optimization problem not unlike that of the In-
formation Bottleneck scenario of [14]. The other approach is to use a multiobjective
optimization method, e.g. Evolutionary Algorithms.



In [3], the situation was so simple that a straightforward heuristic approach was
chosen to perform an approximative SIVE decomposition along the requirements of
Eqs. (1)-(4). This does not limit the generality of the principle.

3 Current developments in the SIVE framework

The framework above has only been started to be applied in Bold Hearts 2003. The
full generality has not yet been used. The acquisition of the passing skill required
a 2-dimensional separator manifold in a 3-dimensional space to implement the vari-
ant/invariant separation. However, in general, one will need higher-dimensional sepa-
rators. To achieve that, the present skills will be implemented using hierarchical Self-
Organizing Maps or support vector machines.

Another goal is to probe the generalization capability of SIVE. One of the advan-
tages of the approach is that the variants/invariants decomposition is expected to sepa-
rate out what properties are essential for solving a task and which are incidental. Bold
Hearts 2003 had been trained only against a single team. This year’s 2D team will also
use a different team to train against and thereby study how the difference in strategy
will reflect in the variants and invariants. This, on the other hand, will shed light on how
generalization can be automated in the learning process in agents.

We will use the SIVE framework also to develop the 3D team skills. It is envisaged
to base even the 3D world model reconstruction in the framework of SIVE (similarly
to [10]). If that turns out to be infeasible, then for this year’s team the world model will
be reconstructed by hand, and the passing skill will be trained using SIVE, similarly to
last year’s team.

A new addition to the SIVE framework is the empowerment concept which is cur-
rently being developed in conjunction with the information-theoretical agent analysis
studies in [6, 10]. Here, one attempts to optimize the information flow from actuators
to sensors, which can give rise to the “discovery” of new (even higher-level) modes of
behaviour. The goal is to attempt to use this empowerment concept in the development
of new skills and in the refinement of existing skills for RoboCup agents.
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