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Abstract. In this paper we introduced our soccer 3D simulation team structure, 
main ideas and fundamentals used to support them. We have used fuzzy behav-
ior based approach and reinforcement learning methods as well as developing a 
trainer tool to visually control and train our multi-agent team. Also we have de-
scribed our design patterns and multi-layer architecture used in our system. 

1   Introduction 

Simulated environments are a commonly used method for researching artificial intel-
ligence methods in physical multi-agent systems. Simulations are especially useful for 
two different types of problems: (1) to experiment with different sensors, actuators or 
morphologies of agents and (2) to study team behavior with a set of given agents. 
Additionally, the connection between both types of problems is an interesting re-
search problem [1].  
 

According to our past three years of experience in developing a team of intelligent 
agents, we have come to a customized methodology and approach to construct an 
extensible, reusable and robust framework. In this paper we describe this framework 
and also our academic research areas. 

In focusing areas section we describe how the AI methods help us solve our prob-
lems. In the system design part we introduce how we use a component-based system 
in a multilayered architecture. Also we introduce our developed tool to both test and 
train our agents. 
 
 
 



2   Focusing areas 

In this section two types of methods will be described. One is fuzzy behavior-based 
approach which is used in decision making process. The other one is reinforcement 
learning method that is used in skill development. To achieve these high level goals, a 
trainer tool will be developed to both train the agents and also track their behaviors.  

2.1   Decision-making 

We have used a behavior-based approach to control the agents. In our approach, we 
also employed the power of fuzzy logic. The use of fuzzy logic has two advantages: 
(i) the ability to express partial and concurrent activations of behaviors; and (ii) the 
smooth transitions between behaviors [2]. In fuzzy behavior-based control, each be-
havior is synthesized by a rule base controlled by an inference engine to produce a 
multivalued output [3]. The implementation of complex behavior generation for arti-
ficial systems can be extremely difficult due to the very high level complexity in-
volved. This problem can be partially overcome by decomposing the global tasks into 
simpler well specified behaviors which are easier to design and tuned independently 
of each other [4]. Each of these behaviors can be seen as a fuzzy controller, mapping 
the states as inputs to the control values as outputs. At the higher level, a planner 
generates a global plan for the agent. Each plan consists of several meta-rules or 
context rules that together direct the agent to achieve its goal. Each meta-rule consists 
of a context and a behavior in the form of: 

 
 IF context THEN behavior, 
 
meaning that behavior should be activated with a strength given by the truth value 

of context, a formula in fuzzy logic. When more than one behavior is activated, their 
outputs will have to be fused. Behaviors that compete for controlling the agent must 
be coordinated to resolve potential conflicts. Fuzzy behavior coordination is per-
formed by combining the fuzzy outputs of the behaviors using an appropriate opera-
tor. The defuzzification is used to select a final crisp action ultimately used for con-
trol [3]. Context rules allow us to express different patterns of behavior combination. 
The combined use of fuzzy behaviors, fuzzy context rules, and fuzzy command fu-
sion provides an extremely flexible solution to the behavior coordination problem [5]. 
For example in the 3D simulation, the agents have four control values to control their 
effectors. Power for drive, direction for drive, power for kick, and angle for kick are 
four control values of an agent in the current version of server (In the future, the 
power and direction for drive may be changed to power of left and right motors). 
Each behavior in the lowest level generates a fuzzy set for each of these control vari-
ables. Then the fuzzy sets of all behaviors are combined (by means of an appropriate 
fuzzy operator) to produce a fuzzy set for each control variable. Then defuzzification 
is performed and a crisp value for each control variable is obtained and sent to the 
effectors. In this way, the agent can consider different behaviors in parallel, and apply 
the best control values to its effectors. This modular fuzzy control scheme can speed 



up the development process of the agent, because each behavior can be seen as a 
fuzzy controller and implemented independently of the other behaviors. To design 
each fuzzy controller we can combine the fuzzy logic with learning algorithms and 
structures. For example we can use neuro-fuzzy systems such as ANFIS to design the 
fuzzy controller that has the capability to learn its rules and tune its membership func-
tions. 

2.2   Least-error, adaptive skills 

According to changes in the environment, like server versions or the noise, we have 
decided to use learning methods to reach a stable state. The description of our method 
is as follow: a skill is a sequence of basic commands (such as drive or kick) that 
transform the current situation to a new situation in next steps. The result situation is 
an element of terminal states set ( fs ). The skill ends if either a terminal state is 
reached ( ft ss ∈  ), or if the time exceeds a certain limit. Since each skill has a 
clearly defined goal, the task is now to find a sequence of basic commands that does 
the job. This can be done either by formal programming or by reinforcement learning 
methods. The main idea of RL is that the agent should incrementally improve its 
decision policy such that the learning goal is fulfilled better and better. In this case we 
use Real-Time Dynamic programming methods [6] that solve the learning problem by 
approximating an optimal value function by repeated control episodes. Since the state 
space is continuous, a feedforward neural network is used to approximate the value 
function [7]. 

For example in intercept-ball skill, our rewarding system is as follow: we consider 
two types of rewards to the learning agent. One is task reward , tr  , that is given 
when the learning agent can successfully intercept the passed ball, since the task 
reward is rarely given to the agent we use an intermediate reward , ir  , that is given 
to the learning agent when it can reduce the distance between itself and the passed 
ball. 

     

3.   System design 

According to our previous experience, we consider our team effort be in a robust 
framework to support feature variations and extensions and also a rapid approach to 
code and test components. For this we have our software architecture and develop-
ment tools. 

3.1   Software architecture 

The architecture of the system is the place to show how we are thinking of a complete 
human-like agent simulation. Keeping in mind how a real soccer player interact with 



his world using the SR (Sense Response) scheme, we model a sense-think-act sce-
nario with the packages and layers of architecture as follow: 

 
Fig. 1. Layers of architecture making a full-featured spades enabled soccer player agent 

 
This is a two-way system; one for setting up the actuators (act package) and an-

other for gathering raw data into the system and making decisions according those 
information (the sense and think packages). 



In the act package does the desired service for the agent using the façade design 
pattern. The agent skills reside in the service layer with the emphasis on on-demand 
adaptations, that is easily change the behavior of a player when new versions of 
server released. The team strategy is implemented in the façade layer; the main idea is 
to picking and assembling specific subset of services (skills).  

The other important aspect of the system is understanding the state of the play, 
tracked with a state-machine, and making appropriate decisions (These decisions are 
those which are fed to the actuating part.). The sense and think packages together do 
this fundamental task.  

3.2 Development tool 

Besides using defined team coding rules and standards, a time-saving and high-
performance utility, named agent trainer, is used to both test the just-coded compo-
nents of the system and train the agents. The main parts of the agent trainer are: a 
monitor to watch out how the agent is thinking and a joystick-enabled input to force 
and move playing objects in the simulation.  
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