
Mithras3D Team Description Paper 2014
Soccer Simulation 3D League

Armita Sabeti Ashraf, Atieh Alsadat Moosavian,
Fatemeh Gerami Gohar, Fatima Tafazzoli Shadpour, Romina Moradi, Sama

Moayeri

Farzanegan (1) High school, Tehran, Iran

Abstract. In this paper we describe Farzanegan soccer simulation team
activities. After an introduction to the Soccer Simulation 3D League we
will describe our team architecture and its behavior which contains some
skills used in order to deal with several challenging problems in this field
such as balancing, movements, making decision.
Keywords: Inverse and Forward Kinematic, Modeling, Denavit Harten-
berg.

1 Introduction

Farzanegan High school Laboratory has been working on RoboCup science for
many years and achieved many remarkable successes in different Robocup Com-
petition Leagues. Our simulation group had been working on Rescue Simulation
League, Soccer Simulation 2D League and subsequent to this our researches has
been started in Soccer Simulation 3D since 2009.
The RoboCup 3D Simulated Soccer League allows software agents to control
humanoid robots to compete against one another in a realistic simulation of the
rules and physics of a game of soccer. The platform strives to reproduce the
software programming challenges faced when building real physical robots for
this purpose. The Robocup simulation leagues focus on AI and team strategies
developed by the participant teams. The 3D simulation competition increases
the realism of the simulation environment by adding an extra dimension and
more complex physics. The interest in the 3D simulation competition is design
of implementation of Multi-agent high-level behaviors.

2 Team Architecture

The base code was written in 2009, and after that our development and opti-
mization activities has been started on it. Classify agent behavioral layers which
exist in base code help us to design some methods to make good decisions.

– Simulation Server
– Connection
– Agent Brain

– World Model
– Make Decision
– Agent Actions

Fig. 1.

2.1 Connection

This class is responsible for communicating with server. It synchronizes different
threads of execution with server timing. When the new information arrives, the
connection layer updates the agents WorldModel.

2.2 Command

This class makes the commands which we send to the server.

2.3 Mathematics

Here are our mathematical classes such as Vector and Matrix.

2.4 Utilities

In this folder we have some useful classes such as config (which we use in order
to initialize some variables and change them easily.) converter (which we use in
order to convert different types of values to each other, for example degree to
radian or Cartesian coordinate system to spherical coordinate system.) Logger,
Timer and Types.

2.5 Kinematics

Here we have the Forward and Inverse Kinematic classes which will be explained
later.

2.6 WorldModel

Worldmodel contains main and basic calculations used in actions of robot like
walking, turning and decision. In this part we are dealing with position and ro-
tation status of each object on the field. And of Course for the agent itself, we
calculate useful information about joints of agent, forces which are applied to-
wards it, gyroscope, etc. In each cycle, server sends a string of information with
specific format and arrangement. First of all, we make a graph out of information
that server sends. After that, in each cycle of time, we extract the information
and update our model of world. Some information follows simple form of up-
dating. For example, to update angle of turning we just specify, individualize
and then save raw data. But for updating vector of accelerometer and amounts
of gyroscope, we need some calculations. Server gives amount of changes in ac-
celerometer vector since last time, but we need accelerometer vector itself. So we
do one integral on it. More complicated calculations are in localization of agents
and ball. To check whether robot is falling down or not or calculate the angle
between agent and any point in field, we save information that server gives us
in each cycle and use complicated calculations. For example, raw information
received from server contains seen objects by robot, the way it sees them. Its
moves and turns in neck joints and body situations influence the numbers. So
the first thing to do is to turn those relative positions to universal positions us-
ing rotation matrixes which rotates back all those relative positions. Since neck
turn does not depend on body rotation, we need different matrixes, neck and
body. Neck rotation matrix is calculated easily since it is consist of two simple
joints and we have the angles. But the body rotation matrix is somehow more
complicated. We briefly say that it can be calculated in two different ways, in
the first way we use gyroscope preceptor and in the second one we use relative
information from horizontal and vertical lines on the field.

After doing calculations we have different position of the robot with low
disagreement. For finding the correct position of the robot we use weighted
average on the whereabout position.

2.7 Agent

The agents must contain some procedures which manage their behaviors. Robot
needs special skills to play better, such as kick, pass, dive, stand up (which itself
has different kinds depended on the way that the agent falls. Standup from front,
back, left side or right side), turn (rotates to place where is asked). These skills
are written in this part. This part is divided in to some layers in order to be
more organized. The Inheritance of Agent class is shown below:

– Joint Controller
– Body Controller
– Robot
– Basic Agent
– Agent
– Advanced Agent
– Our Player

Fig. 2.

3 Walking

we implemented walking with repeating stable steps. Each step is divided into
two movements: raising the leg and moving it forward, and then taking it down
during moving it forward again.
The magnitude of upward and forward motion is optimized by utilizing PSO
algorithm. [5]
We used Inverse Kinematics to commute these magnitudes into proper values
for the joint angles, which are given as inputs to the motion functions.
Inverse Kinematic is a method to compute a set of joint angles that satisfy the
end-effecter constrains.
For stability some physical factors must be considered. One of these factors is
Center of Mass (CoM). We can also use other dynamic feedbacks such as Zero
Moment Point (ZMP). In stable patterns this point must be within the support-
ing area. (The convex hull of the robot’s feet.)

3.1 Forward Kinematic

Our purpose in this algorithm is determining the position of the joints and other
points with knowing the angles of the joints.[2] One of the methods which helps
us to achieve this purpose is Denavit Hartenberg.[3] In fact, this method goes
from joint to joint in four steps, multiplying a matrix in the previous matrixes
in each step.
1st Step: a displacement along Z axis
2nd Step: rotation around Z axis
3rd Step: displacement along X and Y axes
4th Step: rotation around X axis
After going joint to joint, the final matrix must be multiplied by the inverse
of the total rotation matrix in order to obtain the coordinates in the universal
coordinate system.

Fig. 3. matrix chain for moving from torso to the right sole

3.2 CoM(Center of Mass)

We used the forward Kinematic method to find the centers of the bodies of the
Nao robot (for example each hand itself has two bodies, and each Leg itself has
three bodies.). Then we can compute Center of mass of the whole robot with
this formula: ∑

mi∗pi∑
mi

When mi is mass of the body and pi is the position of the center of the body.

3.3 Inverse Kinematic

Robot control actions are executed in the joint coordinates while robot motions
are specified in the Cartesian coordinates. Conversion of the position and orien-
tation of a robot from Cartesian space to joint space, called as inverse kinematics
problem, which is of fundamental importance in calculating desired joint angles
for robot design and control.
The algorithm uses the displacements of each joint then gives us joint angles. For
a robot with n degree of freedom, at any instant of time joint variables is denoted
by θi = θ(t), i = 1, 2, . . . , n, and position variables Xi = X(t), i = 1, 2, . . . , n. The
relations between the position X(t) and joint angle θ(t) can be represented by
forward kinematic equation, X(t) = f(θ(t)).
The Inverse Kinematic exactly does the visa versa thing, it means that it gets
the position and produces the appropriate angles.
At first we had simplified the problem with some assumptions. For example we
have omitted the first joint in our calculation temporarily and will add it later.
And we tried to have the ankle parallel to the ground. So we find these equations:

α = arctan(MZ)

β = arccos(l1
2−l2

2−l”2

−2∗l2∗l)
θ3 = α+ β

θ4 = − arccos(l”
2−l1

2−l2
2

−2∗l1∗l2 + 180)
θ5 = −θ3 − θ4

θ2 = − arctan(YZ)
θ6 = −θ2

Fig. 4. Lateral view of Nao leg

Nao is a humanoid robot with 6 DoF (Degrees of Freedom) in each leg. Joints 1, 2
and 3 are in the same place and joints 5 and 6 are in another same place .We use
heap vector as the place of joints 1, 2 and 3 and ankle vector as the place of joints
5 and 6 to solve inverse kinematic equations. Then we check equppations answer
for confidence that whether the answers produced are in the limited operating
or not. Therefore, use Inverse kinematics formula for determining joint angles
for each joint. This is implemented as a periodic state machine.
Befor now we couldn’t calculate the first engine with our IK equations. But we
changed the Idea and now we can commute the first engine too. We’ve found
a relation between the first engine value and the rotation of Ankle around Z-
axes, So we use the proper rotation for this engine. Then we change the frame of
solving the problem by knowing this value and using forward kinematic methods
and then we find the exact value of other engines.
Actually we have calculated the jacobian matrix and we have implemented the
IK with using jacobian based methods such as iterative ones. But we are testing
both of this methods to find which one is better.

4 Online Modeling

In order to observe the robot actions better we have modeled the Nao robot in
OpenGL which works parallel to the Simspark server with getting some outputs
from the agent.
And also in order to observe the worldmodel calculations we modeled the ground
as a 2dmonitor in OpenGL.

Fig. 5.

Fig. 6. Agent modeling using OpenGL

Fig. 7. World modeling using OpenGL

5 Future Works

In the worldmodel part we are working on minimizing the errors. In order to do
this we want to add some filters to our calculates.
And also we are optimizing the skills and decision making of the Agent. We are
working to use the CoM that we have calculated in order to make more stable
motions.

References

1. Atieh AlSadat Moosavian , Sara Javadzadeh No , Armita Sabeti Ashraf ,Nazanin
Sadat Dastserri, Farzanegan Team Description Paper 2011 Soccer Simulation 3D
league

2. http://www.cs.duke.edu/brd/Teaching/Bio/asmb/current/Papers/chap3-forward-
kinematics.pdf

3. Ravi Balasubramanian, The Denavit Hartenberg Convention
4. Rcssserver3d user manual
5. Cord Niehaus, Thomas Rofer , Tim Laue, “Gait Optimization on Humanoid Robot

using Particle Swarm Optimization”.
6. Joao Certo,Nuno Lau, Lus Paul Reis, “Multi-Agent Coordination through Strategy”

.
7. http://www.wikipedia.org/

