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1. Introduction 

 
Shahid Beheshti University has had a team in soccer simulation 2d. Following these successes, work 

on RoboCup 3D soccer simulation league kicked off in the form of introducing a team to the 3D soccer 

simulation league which have begun researching since 2014.The main challenge in 3D soccer simulation is 

the control of a humanoid robot while satisfying both the physical constraints of the robot and the official 

rules of a soccer game. In order to achieve this goal a number of physical, AI and learning algorithms have 

been used which can be optimized through the usage of AI methods. By using simulated robot agents instead 

of actual NAO robots we obtain several advantages such as being able to experiment on the robots in shorter 

time and less money expenses. Thus the RoboCup organization’s goal of using 11 humanoid soccer bots to 

defeat an 11-man football team can be achieved much sooner. 

This paper is structured as follows: section 2 the system architecture is discussed, followed by agent’s 

behavior and skills in section 3 and future works in section 4. 

 

Abstract. This paper describes the ideas, and research 

carried out through novel algorithms used by the 

Cyclone3D soccer simulation team aiming to optimize 

the performance of humanoid soccer agents. Our 

agent’s performance is currently based on several 

physical and AI algorithms used for localization and 

skills such as walking and kicking which will be 

briefly explained in this paper. 
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2. System Architecture          
 

Our overall system architecture (Fig. 1) can be broken-down into several modules that interact with 

each other. The server communication module is in charge of establishing a two-way connection between the 

Simspark simulation server and our agent while decoding incoming messages into the agent’s world model 

and encoding outgoing ones so that they are ready to be sent to the server. Our agent layer is responsible for 

the agent’s basic skills and behaviors including localization, standing up, walking and kicking. Our agent’s 

final actions during a cycle are determined using information provided by the server which each agent can 

access through its own world model. These actions are returned to the connection class ready to be encoded 

and sent back to the server. 

 

 
 

 

Fig. 1. Overall base architecture 



3. Agent Behavior and Skills         
 

In this section we will discuss the methods and algorithms used in order for our agent to localize 

itself and other objects. We will also discuss how walking skill functions are. 

 

3.1 Localization 

 
This section describes the different methods we used for self-Localization and ball localization 

 

3.1.1 Self-Localization 

 
These methods are used by our agent in order to obtain its position. We prefer the first 

method and the second method is used if our agent cannot see more than two flags. 

 

3.1.1.1 Localization with two flags or more 

 
Our flags heights are always constant therefore we can always obtain our agent’s 

location by using the coronal plane. If there are more than two flags in our agent’s sight, we 

will pair them up and use this process on each pair and finally in order to obtain our position 

we will use weighted average on the results of this process. 
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3.1.1.2 Localization with one flag and body direction 

 
The server sends us the position of a flag. We use these flag positions and a 

gyroscope to find out what our body direction is. Then we use this body direction and flag 

position to localize our agent’s position. Using a gyroscope for a long time will result in a 

high error. 

 

3.1.2 Ball localization 

 
In order to score a goal, we have to obtain the location of the ball. There are only two 

situations, we either have the ball in our sight or we don’t. In the first condition the server gives us 

the coordinates of the ball and in the second condition we try to keep the ball in our sight while 

trying to have a better view on court so that we can see more flags when looking at the ball. 



3.2 Walking             
 

Creating a stable, fast and at the same time flexible walking is perhaps the biggest problem in 3D 

soccer simulation. Currently we use a static walking method based on physical factors such as Center of 

Mass (COM) and Zero Moment Point (ZMP) which was first proposed by [1] for biped humanoid robots 

during an IEEE Robotics convention. By satisfying the constraints noted in this method we receive a set of 

trajectories, afterwards we use inverse kinematics to find out the required angular velocity in order to 

achieve these trajectories. 

 

3.2.1 Walking cycle 

 
A complete walking cycle is composed of two phases: double-support and single support. 

The double support phase is when both feet are on the ground and during the single support phase 

one foot remains steady on the ground while the other foot swings from the rear to the front. In 

order to achieve stability during these phases we need to satisfy specific constraints which will be 

discussed in the next section. 

 

3.2.2 Trajectories 

 
In order to achieve a stable walking a set of constraints need to be fulfilled which lead to 

specific trajectories. This will be discussed in this part. Note that the trajectories we obtain are only 

for the sagittal plane since we are using a static walking method which was first proposed by [1]. 

We obtain the following constraint for our ankle trajectory: 

 

 

𝜃𝑎(𝑡) =

{
 
 

 
 𝑞𝑔𝑠(𝑘), 𝑡 = 𝑘𝑇𝑐
𝑞𝑏        , 𝑡 = 𝑘𝑇𝑐 + 𝑇𝑑
−𝑞𝑓     , 𝑡 = (𝑘 + 1)𝑇𝑐
−𝑞𝑔𝑒   , 𝑡 = (𝑘 + 1)𝑇𝑐 + 𝑇𝑑

 

 

 

𝑥𝑎(𝑡) =

{
 
 

 
 
𝑘𝐷𝑠                                                                      , 𝑡 = 𝑘𝑇𝑐
𝑘𝐷𝑠 + 𝑙𝑎𝑛𝑠𝑖𝑛 𝑞𝑏 + 𝑙𝑎𝑓(1 − 𝑐𝑜𝑠 𝑞𝑏)            , 𝑡 = 𝑘𝑇𝑐 + 𝑇𝑑
𝑘𝐷𝑠 + 𝐿𝑎𝑜                                                          , 𝑡 = 𝑘𝑇𝑐 + 𝑇𝑚
(𝑘 + 2)𝐷𝑠 − 𝑙𝑎𝑛𝑠𝑖𝑛 𝑞𝑓 − 𝑙𝑎𝑏(1 − 𝑐𝑜𝑠 𝑞𝑓), 𝑡 = (𝑘 + 1)𝑇𝑐
(𝑘 + 2)𝐷𝑠                                                          , 𝑡 = (𝑘 + 1)𝑇𝑐 + 𝑇𝑑

 

 

 

 

𝑧𝑎(𝑡) =

{
 
 

 
 
ℎ𝑔𝑠(𝑘) + 𝑙𝑎𝑛                                                  , 𝑡 = 𝑘𝑇𝑐
ℎ𝑔𝑠(𝑘) + 𝑙𝑎𝑓𝑠𝑖𝑛 𝑞𝑏 + 𝑙𝑎𝑛𝑐𝑜𝑠 𝑞𝑏, 𝑡 = 𝑘𝑇𝑐 + 𝑇𝑑
𝐻𝑎𝑜                                                    , 𝑡 = 𝑘𝑇𝑐 + 𝑇𝑚
ℎ𝑔𝑒(𝑘) + 𝑙𝑎𝑏𝑠𝑖𝑛 𝑞𝑓 + 𝑙𝑎𝑛𝑐𝑜𝑠 𝑞𝑓, 𝑡 = (𝑘 + 1)𝑇𝑐
ℎ𝑔𝑒(𝑘) + 𝑙𝑎𝑛                                   , 𝑡 = (𝑘 + 1)𝑇𝑐 + 𝑇𝑑

 

 



And the following constraints are obtained for our hip trajectory. 

 

𝑧ℎ(𝑡) = {

𝐻ℎ 𝑚𝑖𝑛, 𝑡 = 𝑘𝑇𝑐 + 0.5𝑇𝑑
𝐻ℎ 𝑚𝑎𝑥, 𝑡 = 𝑘𝑇𝑐 + 0.5(𝑇𝑐 − 𝑇𝑑)

𝐻ℎ 𝑚𝑖𝑛 , 𝑡 = (𝑘 + 1)𝑇𝑐 + 0.5𝑇𝑑

 

 

𝑥ℎ(𝑡) = {

𝑘𝐷𝑠 + 𝑥𝑒𝑑                , 𝑡 = 𝑘𝑇𝑐
(𝑘 + 1)𝐷 𝑠 − 𝑥𝑠𝑑 , 𝑡 = 𝑘𝑇𝑒 + 𝑇𝑑
(𝑘 + 1)𝐷 𝑠 + 𝑥𝑒𝑑 , 𝑡 = (𝑘 + 1)𝑇𝑐

 

 

𝑥ℎ(𝑡) =

{
 
 
 
 

 
 
 
 𝑘𝐷𝑠 +

𝐷𝑠 − 𝑥𝑒𝑑 − 𝑥𝑠𝑑

𝑇𝑑
2(𝑇𝑒 − 𝑇𝑑)

 [(𝑇𝑑 + 𝑘𝑇𝑒 − 𝑡)
3 − (𝑡 − 𝑘𝑇𝑒)

3 − 𝑇𝑑
2(𝑇𝑑 + 𝑘𝑇𝑐 − 𝑡) + 𝑇𝑑

2(𝑡 − 𝑘𝑇𝑐)]

+
𝑥𝑒𝑑
𝑇𝑑
(𝑇𝑑 + 𝑘𝑇𝑐 − 𝑡) +

𝐷𝑠 − 𝑥𝑠𝑑
𝑇𝑑

(𝑡 − 𝑘𝑇𝑐), 𝑡 ∈ (𝑘𝑇𝑐 , 𝑘𝑇𝑐 + 𝑇𝑑)

𝑘𝐷𝑠 +
𝐷𝑠 − 𝑥𝑒𝑑 − 𝑥𝑠𝑑
𝑇𝑑(𝑇𝑒 − 𝑇𝑑)

2
 [
(𝑡 − 𝑘𝑇𝑐 − 𝑇𝑑)

3 − (𝑇𝑐 + 𝑘𝑇𝑐 − 𝑡)
3 − (𝑇𝑐 − 𝑇𝑑)

2(𝑇𝑐 + 𝑘𝑇𝑐 − 𝑡)

−(𝑇𝑐 − 𝑇𝑑)
2(𝑡 − 𝑘𝑇𝑐 − 𝑇𝑑)

]

+
𝐷𝑠 − 𝑥𝑠𝑑
𝑇𝑐 − 𝑇𝑑

(𝑇𝑐 + 𝑘𝑇𝑐 − 𝑡) +
𝐷𝑠 + 𝑥𝑒𝑑
𝑇𝑐 − 𝑇𝑑

(𝑡 − 𝑘𝑇𝑐 − 𝑇𝑑), 𝑡 ∈ (𝑘𝑇𝑐 + 𝑇𝑑 , 𝑘𝑇𝑐 + 𝑇𝐶)

 

 

 

 

Note that on level ground ϴh is constant and equal to: 0.5 

 

 
3.2.3 Inverse kinematics 

 
We need to pass our obtained trajectories to the inverse kinematics function in order to 

receive our joints angular velocities. This function receives input in the form of a matrix containing 

the foot position compared to the torso therefore we must convert our global foot position to match 

this requirement. In order to do this, we subtract the global hip position from the global foot 

position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3 Kicking and Genetic Algorithm 

 
3.3.1 Fast Kick and Force Kick 

    

We used two different methods for implementing kick. One of them is fast kick and the 

other one is force kick. In force kick we need more time but the ball will go a long distance. Fast 

kick is faster but its range is low. 

 
3.3.2 kick optimizing  

 

After discussing different types of kicking, we concluded that the best way to develop a 

kick is using learning or optimization methods. So we checked different learning and optimization 

methods (RL, Imperialist Competitive Algorithm, PSO, Genetic Algorithm) and we came up with 

Genetic Algorithm. Our shot has three steps in which the first two steps are static and the third step 

will be determined by using genetic algorithm. To determine the third step, we had about 2048 

chromosomes as our starting population (21 of these shots were written by team members and the 

rest of the shots were made randomly). We applied genetic algorithm for 112 generations and after 

this we got to a point that the algorithm didn’t made any better chromosomes. 

 

Because of low speed of learning we made a network on a cluster to continue the process in 

parallel form. Without a good fitness function, we faced a problem. Although we have a large 

population, Fitness converges to the local peaks with a low rating. So we needed to improve the 

genetic algorithm. For example, we use Tournament Selection method but it didn’t give us what we 

expected. 

 

As a result, we search for a new method to prevent convergence. To prevent our problem 

from converging to the local peaks or it can come back of this situation, we need to keep our 

chromosomes as distinguished as possible. In other word we must have more uniform distribution. 

 

So beside our rate function which was based on the distance that the ball will go, we 

consider another rate which is based on uniqueness of the chromosomes in the population which 

they are in. As the result, chromosomes can go to the next generation if they have higher rate of 

others and also be more different than the rest of the chromosomes.  

 

If we define fitness the distance that the ball will go and the rate of uniqueness of the 

chromosomes, we still have convergence problem. This new function doesn’t guarantee the uniform 

rate of chromosomes in future generation. According to all of this, we should use a method to 

ensure us the arbitrary distribution of chromosomes which we want follow a certain probability 

distribution in all generations. For creating the generations which follow the considered 

distribution, we use Metropolis algorithm beside Grey Wolf Optimizer algorithm. 



4. Path Planning 
 

We needed a plan to go from a point to another in which we can leave the opponent agents. For this 

problem we decide to use “The Boustrophedon Cell Decomposition”. The “Boustrophedon Cell 

Decomposition (BCD)” is a method used in artificial intelligence and robotics for configuration 

space solutions. Like other cellular decomposition methods, this method transforms the 

configuration space into cell regions that can be used for path planning.  

Cellularization algorithms is not suitable because of the mass of information we exchange each 

cycle. So we made another plan with Bézier Curve. A Bézier curve is a parametric curve used to model 

smooth curves that can be scaled indefinitely. "Paths", as they are commonly referred to in image 

manipulation programs, are combinations of linked Bézier curves. Paths are not bound by the limits 

of rasterized images and are intuitive to modify. 

 

 We used Bézier Curve and a simple go-to-point algorithm together. In each cycle we draw a line 

between our selected agent and the point where we want it goes, called line L. We get the distance of each 

opponent agent from line L. Assume that the nearest opponent agent to L has distance D and has distance P 

than our selected agent. If P < D we go to our target point in a straight line. Otherwise we use Bézier Curve 

method to identify our path. 

 

5. Future Works 
 

We are currently working on our walking system using genetic algorithm. But it’s not completed 

yet. But we believe that it’ll be completed before the competition. Also we’re currently working on our skill 

changing and plans. 
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