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Abstract. ITAndroids was reestablished in mid-2011 by undergraduate
students at Aeronautics Institute of Technology. Since then, the team is
growing fast and has already established itself as a strong robotics compe-
tition group, winning several competitions in Brazil and Latin America.

1 Introduction

ITAndroids is a robotics competition group associated to the Autonomous Com-
putational Systems Lab (LAB-SCA) at Aeronautics Institute of Technology. As
required by a complete endeavor in robotics, the group is multidisciplinary and
contains about 40 students from different undergraduate engineering courses. In
the last 5 years, we have achieved good results in competitions, especially in
Latin America.

Our older Soccer 3D team had a Base made from Magma Offenburg, but
since RoboCup 2016 we use our own Base using C++. Currently, ITAndroids is
the only team of Latin America which uses its own Base code. RoboCup 2016
was the first run and we achieved the 6th place.

This paper describes our development efforts in the last years and points out
some improvements we want to implement in a near future. Sec. 2 describes our
team’s code structure. In Sec. 3, we discuss our localization method. In Sec. 4, we
show our motion control system. Sec. 5 explains our role assignment system for
positioning. Sec. 6 shows our strategy and points our robot navigation method.
Finally, Sec. 7 concludes and shares our ideas for future work.

2 Code Structure

The code has been planned and divided in several modularized parts, so that
each part can be separated from the others with ease. ITAndroids Soccer 3D
used to work with a Base made from Magma Offenburg and ITAndroids Soccer
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2D works with Agent2D. In this way, our current code structure was heavily
influenced by those works.

2.1 Communication

It is the layer that directly connects with the server, in order to receive messages
and send messages to it. This layer receives and sends a string as described in
the server’s website. It uses a socket to implement the communication, receiving
a message that contains the information from the server.

2.2 Perception

This layer receives the string from Communication, and converts the string into
a tree, parsing it. The layer then iterates over the created tree and creates new
objects from it, so that the agent can have new information each new loop. The
created objects come in the form of perceptors and each perceptor is as described
in the server’s website.

2.3 Modeling

Modeling basically models the world state. Not only that, it also models situ-
ations, e.g. in whether the agent has fallen. It uses the perceptors created in
perception to update its models, getting the relative position of field landmarks
to find it’s positions, and acelerometer data to see if the agent has fallen.

Agent Model The Agent model is the part of the code that models specific
agent modes. It calculates the transformation matrices, in order to change the
coordinate system from the camera to a ground coordinate system, using robot
joints and making simplifications on the system.

World Model The World Model is responsible for modeling parameters like
game state, time, and position, so that these information can be used by Decision
Making. It runs the Localization algorithm in order to estimate the robot’s
position.

2.4 Decision Making

Decision Making is a layer that divides each robot by decision makers. It consists
Behavior and Decision Maker. One agent cannot change its decision maker, but,
that decision maker must be able to integrate all the possible behavior the agent
has available, e.g. a Soccer agent receives a SoccerDecisionMaker, and a goalie
receives a GoalieDecisionMaker. Those decision makers dictate the movements
the agent should take in order to successfully follow a determined strategy.

Behavior is a set of what the agent can to in order to change its own state.
Behavior is a set of instructions that goes from high to low level of abstraction,
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in order to make the agent follow it’s strategy. Each behavior can use other
behaviors for a more abstract level of problem solving.

The layer has two parts, a part that is a data structure called BehaviorFac-
tory, and a structure called Behavior. A BehaviorFactory stores all behaviors
within itself, and each behavior has access to all other behaviors in the Behavior
Factory.

2.5 Control

Control is the layer that gets the requests from behavior and changes it into
more concrete things. For example, it takes a walk request created from one of
the behaviors, and converts it into joints positions.

2.6 Action

Action is a layer that converts all the information the agent has created and
wants to send to the server into a string, in a way the server can recognize.

3 Localization

Using complex strategies in robot soccer requires that the agent knows its global
position in the soccer field. The problem of having a mobile robot estimates its
pose with respect to a global coordinates system is termed Localization in the
robotics community. To solve this problem, the standard approach involves us-
ing a Bayes filter, which iteratively incorporates sensors’ measurements and the
robot’s actions to construct a probabilistic estimate of the robot position. Since
implementing this technique directly is not feasible computationally, approxi-
mated techniques, such as the Kalman filter [9] or the particle filter [10], are
often employed. We decided to use Monte Carlo localization (MCL) [5], which
uses a particle filter to solve the Localization problem, because it is one the most
efficient methods [8] and some teams in 3D Soccer Simulation have successfully
used this technique [3, 4].

Our MCL implementation was greatly inspired by the work explained in [6].
Each particle mantains a pose estimate represented by a 3-dimensional vector
x = [x, y, ψ]

T
, where x and y are global field coordinates and ψ is the horizontal

angle the torso of the robot is heading. We use a bootstrap particle filter with
resampling step [11].

In the sensing phase, we currently landmarks (flags and goalposts) observa-
tions and line observations. Our landmark observation model consider gaussian
noises corrupting the horizontal distance and horizontal angle measurements
with covariances σ2

d and σ2
ψ, respectively. Furthermore, we consider that land-

marks observations are independent of each other. Therefore, a suitable rule for
updating the particles’ weights is:
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where w
(i)
k is the weight of the i-th particle in the k-th sampling time, dj is the

measured horizontal distance between the robot and the j-th landmark, d
(i)
j is

the horizontal distance between the robot and the j-th landmark considering the

current i-th particle’s position, ψ̂
(i)
j is the measured horizontal angle between

the j-th landmark and the robot’s heading, ψ
(i)
j is the expected horizontal angle

between the j-th landmark and the robot given the i-th particle position. To
determine adequate values for σd and σψ, we started with measurement covari-
ances presented in Simspark’s documentation and finely tuned these values by
hand. We do not execute a sensing phase when no vision update is present (note
that Simspark sends vision updates only every 3 cycles).

For motion update, we use odometry information given by our walking en-
gine, which gives the torso displacement vector∆dk = [∆xk, ∆yk, ∆ψk]

T
relative

to the local torso coordinates frame of the previous time step. At first, slipping
was making odometry and actual movement differ too much, especially at high
walking speeds. Simply scaling each channel proved effectively in solving this:

d′k =

∆x′k∆y′k
∆ψ′k

 =

α∆xkβ∆yk
γ∆ψk

 (2)

Thus, d′ was the value of displacement effectively used for motion update.
The parameters α, β and γ were manually tuned by comparing the evolution of
the robot’s position and its estimate in Roboviz while the robot was walking.
relative to the robot’s coordinates frame) and manually tweaking α, β and γ.
Then, we update the position of each particle i using:

xk =

x
(i)
k

y
(i)
k

ψ
(i)
k

 =

x
(i)
k−1 +∆x′k cos (ψk−1)−∆y′k sin (ψk−1)

y
(i)
k−1 +∆x′k sin (ψk−1)−∆y′k cos (ψk−1)

ψ
(i)
k−1 +∆ψ′k

+

εxεy
εψ

 (3)

where εx ∼ N
(
0, σ2

x

)
, εy ∼ N

(
0, σ2

y

)
and εψ ∼ N

(
0, σ2

ψ

)
incorporate process

noise. These covariances were also manually tweaked. We execute a motion phase
every cycle, then we naturally run more motion than sensing phases.

To reduce particle deprivation, we use a resampling step after sensing and
motion phases [11]. Given that resampling algorithms may be computationally
expensive, we use the O(N) algorithm shown in [8], where N is the number of
particles used.

To avoid the kidnapped robot problem, which happens in the 3D Soccer Sim-
ulation domain when the server teleports the agent, we used the strategy known
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as Adaptive-MCL [7, 8], which resets particles based on a heuristic estimate of
how bad localized the agent is. Instead of distributing the resetted particles ran-
domly in the soccer field [6], we use the current vision observations to better
reset the particles [7].

Given that two landmarks observations, we may estimate where the robot
is as shown in Figure 1. Note that we end with two hypotheses, which may
be chosen at random. In our case, one of them will usually falls outside of the
soccer field, thus may be discarded. If more than two landmarks are seen in the
current cycle, two landmarks are chosen at random for each particle which is
being resetted. Moreover, we add gaussian noises to the landmarks’ observations
before applying this resetting process to better spread the resetted particles.

Fig. 1. Determining the agent’s localization using two landmarks observation.

Finally, the agent’s position estimate is determined by a weighted average of
the particles’ positions. For future work, we expect to determine the parame-
ters using experiments or optimization techniques instead of relying on manual
tweaking.

4 Motion Control

In 3D Soccer Simulation league, most actions of the robots are highly dependent
on its ability to walk. Therefore, a great amount of our team efforts was focused
on walking. In order to end a good walking method, several ideas were tested.
Our latest walking models are described in this section.

4.1 ZMP Based Omnidirectional Walking Engine

In general terms, the walking engine follows the flux presented on Figure 2. The
input to the algorithm is the desired velocity v = [vx, vy, vψ]T with respect to
the local coordinate system of the robot. Then, at the beginning of a new step,
poses for the torso and the swing foot are selected for achieving the expected
displacement at the end of the step. So, a trajectory for the center of mass
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(CoM) that keeps the Zero Moment Point (ZMP) at the center of the support
foot is computed by using an analytic solution of the 3D-LIPM equation. We
approximate the CoM by a fixed position in the torso. The trajectory of the swing
foot is obtained by interpolating between the initial and final poses of this foot.
Finally, joints angles are calculated through Inverse Kinematics (IK) considering
the poses of the support and swing feet. Note that the module “Next Torso and
Swing Poses Selector” is called once for step, while the others are executed at
the update rate of the joints.

Next Torso
and Swing
Foot Poses

Selector

CoM
Trajectory
Generator

Swing Foot
Trajectory
Generator

Feet Poses
Calculator

Inverse
Kinematics

Solver
Joints

v =

vxvy
vψ



Fig. 2. Walking Engine overview.

A humanoid robot must satisfy dynamical constraints to remain stable. More-
over, the robot geometry imposes constraints: leg reachability is limited by leg
physical dimensions and we also do not want movements where the legs collide.
To achieve dynamic stability, our strategy is to generate a CoM trajectory that
keeps the ZMP at the center of the support foot during single support. We may
at least restrict the initial and final positions of this CoM trajectory, as will be
explained below. Hence, our requirement is to have the robot matches the om-
nidirectional model only at the beginning and at the end of the step. Assuming
constant v, we may compute the expected pose after a step duration T:
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(4)

For our multibody humanoid robot, it is convenient to select a body part as
representative of the whole robot motion: we choose the torso for this. Thus, at
the beginning of a new step, given the current torso and swing foot poses, an
algorithm plans the torso and swing foot poses at the end of the step to make
the torso arrive at the pose dictated by Equation (4) while trying to satisfy
geometric constraints. This algorithm is based mainly on heuristics.
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We still need to move the robot without losing balance. To reason about
the robot dynamics, we approximate it using the 3D Linear Inverted Pendulum
Model (3D-LIPM) [1]:

xZMP = xCoM −
zCoM
g

ẍCoM (5)

Where xZMP = [xZMP , yZMP ]T is the ZMP position, xCoM = [xCoM , yCoM ]T

is the CoM position, zCoM is the CoM height, and g is the acceleration of gravity.
The ZMP is kept at the center of the support foot during single support and
moves it from the current support foot to the next one during double support.

However, the difference between the multibody humanoid robot dynamics
and 3D-LIPM and perturbations, such as external forces and uneven terrain,
will prevent the ZMP to match the reference. The robot is able to accommodate
ZMP error up to the margins of the support polygon without tipping, which is
often suffcient to allow open-loop walking if no strong perturbations are present.
Nevertheless, closed-loop balancing strategies are useful to make the walking
more robust. We have tried using the angular velocities measured from the gy-
rometer to stabilize the walk, which proved effective.

4.2 Kick

We consider that kicking is a motion where the biped starts in a stand position,
kicks the ball and returns to the same stand position. Moreover, during kick-
ing, one foot is taken off the ground, henceforth referred as kicking foot, while
the other one is kept on the ground as support foot. This description suggests
breaking the motion in phases, thus we divided it in the following 5 phases:

– Phase A: the robot moves the ZMP to the center of the support foot to allow
the kicking foot to be taken off the ground in the next phase without balance
loss.

– Phase B: the robot takes the foot off the ground and position it to prepare
for kicking the ball.

– Phase C: the robot kicks the ball.
– Phase D: the robot places the kicking foot on the ground.
– Phase E: the robot goes back to the stand position (ZMP is moved to the

torso projection on the ground).

During phases B, C and D, the robot is in single support, so stability is
of concern. Based on this perception, we use the same algorithm we used to
balance walking for balancing kicking. Again, we constraint the CoM to maintain
a constant height zCoM, so the dynamics becomes linear.

4.3 Keyframe Movement

A Keyframe movement is a movement where the positions of the joints are de-
fined with joint angle and the time when that position must be achieved. When
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the time is between some of the predefine times, the joints positions are interpo-
lated. The interpolation used for the joints is a spline interpolation, implemented
in the Library.

Each Keyframe has a specific archive that has all the joints in discrete time
steps.

Optimization To achieve better results with the keyframe movements, an opti-
mization was used, optimizing the joints positions and the time between joints.
The algorithm used for the Optimization was Covariance Matrix Adaptation
Evolution Strategy [13], and the cost functions were adapted for each optimiza-
tion problem.

Converter As it is known, the team had a base made from Magma Offenburg,
and so, to avoid recreating the movements, a converter was created, and many
movements were converted and heuristically improved. The converter considers
that the same amount of time passes between two keyframes.

5 Dynamic Role Assignment

5.1 Positioning Model

The Delaunay Triangulation algorithm calculate our player’s positions and gener-
ate a formation set of agents for every single position of the ball. These positions
serve as reference points for an agent to where they should be if there is not any
enemy in a dangerous position just according to the ball‘s position in that mo-
ment. The Dynamic Role Assignment idea is that the agents can communicate
themselves, decide the best lineup in that moment and assign the Delaunay Tri-
angulation positions to the team, one for each agent. And do it all dynamically,
sending and receiving messages in every communication cycle.

The lineup consists on eleven positions and each agent, using the data re-
ceived in the World Model, is able to determine which agent should be assigned
to each Delaunay Triangulation position based on the agents‘ position. Each po-
sition is assigned to a number 1 - 11, just as the agent‘s uniform number. So, the
agent generates an array and assigns the number of the Delaunay Triangulation
position to each player in its team.

5.2 Communication between Agents

The objective is send a vector containing each position assigned to each other
agent in the team. Each agent can send and receive messages from the server
in every cycle of 20 ms, with the message‘s size limited to 20 bytes (160 bits).
The problem is that every integer occupies 4 bytes, and the team has 11 players.
So, the vector would have occupy 11*4 = 44 bytes of memory, a lot more than
the limit. The solution used was to use the base64 ascii encoder, a compression
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message encoder that creates a bijection between the vector and other structure
which occupies less memory. Then, the agents would receive the encoded mes-
sage and, using the same bijection, be able to decode and receive the message
vector. The method proved itself to be very efficient, reducing the size of the
role assignment vector form the original 44 bytes to only around 110 - 120 bits.

5.3 Voting System

When the agents have all sent their respective role assignment vectors to each
other (They may differ from agent to since their perception is different), they ac-
knowledge the position which was assigned more times to each respective agent.
Then, the team’s role assignment vector would be filled based on the assign-
ments. Then, the final role assignment vector would be generated based on these
votes, and each player verify the position he should go.

5.4 Marking System

The marking system is a sequential process used to mark opponents agents who
are offensively dangerous during the match.

The System performs three steps: it decides the players that will be marked,
defines roles to mark these players and, finally, uses the Role Assigment system
to designate agents for those defined roles.

To decide which opponents are to be scored, a heuristic method is used based
on the following conditions:

1. Opponent is close enough to take a shot on goal
2. Opponent is not the closest opponent to the ball.
3. Opponent is not too close to the ball
4. Opponent is not too far behind the ball

After that, a set of formation roles must be selected to mark the chosen
opponents. For this, marking roles positions are calculated as the position 1.5
meters from a marked opponent along the line which connects that opponent
to the center of our goal. The formation positions to be replaced are the closest
to each marking position, and their selection is done by evaluating each one for
every replacement, which is a suboptimal solution. In the future, we plan to
use the Hungarian algorithm, which calculates the minimum sum of distances
between the previous forming positions and the marking positions.

6 Strategy and Decision Making

6.1 Set Plays

As in a soccer game, during a simulated game there are situations where the ball
is stopped. When this happens, the team with the ball has a certain amount of
time to make a move, while the other team can’t approach more than a certain
distance from the ball. For some of these situations were formulated different Set
Plays, they were: Own Goal Kick, Opponent Goal Kick and Own Corner Kick.
We plan to implement new Set Plays for each Dead Ball situation in the game.
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6.2 Robot Navigation

Planning consists of finding a sequence of actions that transforms some initial
state into some desired goal state. Currently, there are two Path Planning Algo-
rithms implemented.

Potential Field This robot navigation method applies to each field’s point
a numerical value that corresponds to the potential caused by external agents.
Therefore, is possible to know which points should be avoided and which point is
the goal. We have several advantages of using Potential Fields to robot navigation
[14]. First, it’s easy to implement and visualize, and the resulting behavior of the
robot is therefore easy to predict; furthermore, they support parallelism - each
field is independent of the others and may be implemented as general software.

In our case, the function calculateDirection() receives our current position
and a vector with all objects (players, the ball, the goal, etc) in the soccer field.
Then, we calculate the potential that each object in this vector causes in a
specific point of the field (our position). We can calculate this using the concept
of potential like a constant divided by a power of the distance d between the
object and position.

As we are interested in a direction, our function calculates the potential
associated with each direction (horizontal and vertical). Potential is a scalar
quantity, therefore we can add directly the potential caused by each object in
the vector. So, our function calculates each potential and sum them all. After
that, we can calculate the desired direction using this formula:

θ = arctan

(
Vy
Vx

)
(6)

As you can see, our function calculateDirection() returns the angle (in
radians) between the horizontal direction and desired direction, that points to
the goal and avoids the obstacles.

Rapidly-Exploring Random Trees A rapidly exploring random tree (RRT)
is an algorithm designed to efficiently search high-dimensional spaces by ran-
domly building a space-filling tree. An RRT grows a tree rooted at the Start
State by using random samples from the search space. As each sample is drawn,
a connection is attempted between it and the nearest state in the tree. If the
connection is feasible - obstacle free - this results in the addition of the new
state to the tree. With uniform sampling of the search space, the probability of
expanding an existing state is proportional to the size of its region. The random
samples can then be viewed as controlling the direction of the tree growth while
the growth factor determines its rate. This maintains the space-filling bias of the
RRT while limiting the size of the incremental growth. In our case, the algorithm
stops when the tree finds the Goal State or when the algorithm exceeds the
limit of iterations. Similarly to our Potential Field, we extracted a direction and
our Control System uses it to move agent according to the desired Path.
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Comparison of Methods In order to select the method that would bring
the bests results to the team, we compared the both methods playing matches
between a team that used Potential Field and a team that used RRT. The
matches revealed that the teams are very similar, because most games end up in
a tie. We pretend to construct a better control system and then try to discover
which of the methods will bring the best reults.

7 Conclusions and Future Work

It’s been saw that, even though we remade our code structure, we see that there
is much more to do. During our last competition, LARC 2016, was clear that
our team defense was acceptable. However, our attack was well below expected.
Therefore, our current work focus on optimizing our movements and improving
our attack strategy.

Besides, we intend to develop a Log Analyzer tool, so that it can be easier
to get information from a match and not have to watch the entire match.
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