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Abstract 
Apollo3D is a team in RoboCup soccer simulation 3D league. We mainly aim at 

building a systematical architecture of intelligent and skillful robots. In the newest 11 

vs 11 version, due to the introduction of sensor noise and the expansion of the soccer 

field, a more accurate positioning and efficient upper strategy are need in order to 

avoiding robot being in a disorder. In the past year, our team Apollo3D successful 

devised a new localization system and a new set of cooperating tactics of the agents. In this 

paper, we introduce the mechanism of localization, dynamic footstep planning, 

omnidirectional walking skill and decision making system. 

1 Introduction 
 

Apollo Simulation 3D Team was established in 2006, and successfully attended  

several competitions. We have won the first place in Robocup 2013 and the second place 

in 2013 Iran Robocup recently. The simulated Nao is much like the real one that attracts 

a large mount of students to devote to this field. Thanks to the devotion and 

cooperation of these students, several achievements had been achieved in the past years. 

With the developing and improving of the RoboCup3D platform, the number of 

players has increased to 11, the field has expanded to 600 square meters, and we all must 

use heterogeneous players. These changes urge us to reconsider the action of each robot, 

the localization and communication problem. On this basis, in order to enhance the 

overall performance, we redesign the decision making system of our robots. Section 2 will 

introduce the self-localization of particle filter and how to use Kalman filter to track 

the ball and other agents. Section 3 will introduce a footstep planner for biped robots 

using the method of sequence approximation. Section 4 will introduce the walking skill 

of Apollo3D. Section 5 will discuss the hierarchical role assignment and multi-agent 

cooperation system. 



2 Localization 

2.1 Particle Filter Self-localization 

 
Humanoid robot self-localization means estimating the positions and orientations of   the 

local coordinates   v relative to the world frame   w (Fig.1. This problem involves  at 

least 6 configuration parameters (x, y, z, R, P, Y ), and it is hard to build their  

correlations with the motion model using limited odometers and sensors. Meanwhile, 

most of the time that the robot actually needs to localize itself are when it walks upright 

on a flat surface and the hip joints are restricted in a horizontal    plane. Thus the z, R, P 

(height, roll and pitch) of   v are bounded in a small range. So the robot only needs  to 

predict the 2D position(x, y) and the heading direction θ. 

Figure 1: Diagram of the robot vision system 

Particle filters estimate the posterior distribution of the state xt of the dynamical 

system conditioned on the  sensor  measurement  zt  and  control  information  ut−1, 

Bel(xt )  p(xt | zt , ut 1) . This posterior can be computed recursively using Bayes rules 

and partially observable controllable Markov chains: 
 

Bel(xt )  p(xt | xt 1,ut 1)Bel(xt1) 
 

 

p(xt | zt ,ut 1)   p(zt | xt )Bel(xt ) 

(1) 

(2) 

Equation (1) is called motion update phase. where the robot needs to predict the new 

state of position and orientation xt basing on its motion ut−1 according to its odometers 

and the last state Bel(xt−1). Equation (2) is the observation update phase. In this phase, 

the robots update to the current state on condition of the measurement of the sensors zt. 

The key idea of the particle filter is to represent the posterior 

weighted state samples: 

p(xt | zt , ut 1) by a set of 
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where each (i )   
t stands for an instance of estimated state with w(i )  being its   weight. 

Theoretically, as N  the distribution of these samples match the density of the 

posterior. In practice, we use 1000 particles to approximate the posterior. Algorithm 1 

shows the details. 

 

Finally, the algorithm returns St, we simply calculate the average of 

the state at time t. 

2.2 Kalman Filter Tracking 

x(i)   to stimate 

 

In RoboCup3D environment, the position of the ball and agents keep changing all the 

time. If each individual agent can accurately predict other agents’ movement, it will 

better seize the initiative. Especially at the risk of opponents shooting, our goalie’s quick 

reponse to stop the ball largely depend on its prediction of the velocity of the ball. The 

Kalman filter not only can increase the accuracy of tracking other objects, but also can 

help predict their other states like velocity. 

3 Dynamic Footstep Planner 
 

The walking parameters of robots are defined as y (the forward direction), x (the 

lateral direction) and  (the turning degree) at every time. In competition, the robots 

want to reach the goal as possible as fast. In order to handle the problem, the robots 

need to adjust the three above waking parameters in dynamic environment. A 

sequence theorem is employed to control the three parameters in our team codes. In  a 
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local coordinate system centered at the robot, the goal can be defined 

as statet   xt , yt , t   . Once each walking step walkw  xw , yw , w  of  robots is 

performed, the goal state is adjusted from statet (xt , yt , t ) to 

statet
 

t 
i i1 

w t 
x i1 

w t 
x i 1  w  , shown in Fig.2. 
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Fig.2. The change of goal state during the walking of robots 
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arrive  at  zero  at  the same  time.  In  other  words,  the robots  arrive  at the goal. Let 
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, the following equation can be attained: 
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where  vi 


 w   v  t 

is an important parameter which can control the walking speed of robots. 

Due to the dynamic constraints, we need to assure 
w w 
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i max , where w 
max is the maximum speed of    robot 

lateral  movement, w 
max is  the  maximum  forward  speed,   and w 

max is  the 

maximum turning speed at every step. In order to improve the walking speed as far as 

possible, let: 
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According  to  the  (4)  and  (5),  we  can      attain 
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at the most speed in the dynamic constraints. 

 

4 Omnidirectional Walking Skill 
 

This section mainly describes the omnidirectional walking motion design of our team 

Apollo3D. In this section, we employed a model which is based on double linear inverted 

pendulum to predict and control the robot walking motion. And then we used machine 

learning algorithm to optimize walking parameters. Ultimately, we realized the rapidly and 

stably omnidirectional walking of biped robots in complex and dynamic environment. 

 
Figure3. Omnidirectional walking diagram 

In the process of competition, the changing external environment requires the robot to 

alter its orientation at any time, turn agilely and forward fast. The walking method 

employed in this paper is presented in the Fig.3. First we can get the feasible footholds and 

compute the ZMP values based on the foot-planning module. Subsequently, the trunk 

trajectory of robot can be attained based on a linear inverted pendulum model (LIPM) with  

a predictive control method. As a result, we can plan the space trajectory of every two 

footholds in 3D space according to the cubic spline interpolation method. Meanwhile,  each 
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