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Abstract. ITAndroids was reestablished in mid-2011 by undergraduate
students at Aeronautics Institute of Technology. Since then, the team is
growing fast and has already established itself as a strong robotics compe-
tition group, winning several competitions in Brazil and Latin America.

1 Introduction

ITAndroids is a robotics competition group associated to the Autonomous Com-
putational Systems Lab (LAB-SCA) at Aeronautics Institute of Technology. As
required by a complete endeavor in robotics, the group is multidisciplinary and
contains about 50 students from different undergraduate engineering courses. In
the last 5 years, we have achieved good results in competitions, especially in
Latin America.

Our older Soccer 3D team had a Base made from Magma Offenburg, but
since RoboCup 2016 we use our own Base using C++. Currently, ITAndroids is
the only team of Latin America which uses its own Base code. RoboCup 2016
was the first run and we achieved the 6th place.

This paper describes our development efforts in the last years and points out
some improvements we want to implement in a near future. Sec. 2 describes our
team’s code structure. In Sec. 3, we discuss our localization method. In Sec. 4, we
show our motion control system. Sec. 5 explains our role assignment system for
positioning. Sec. 6 shows our strategy and points our robot navigation method.
Sec. 7 shows how we have started integrating Tensor Flow API into our code.
Sec. 8 presents a tool developed for statistical tests. Finally, Sec. 9 concludes
and shares our ideas for future work.

2 Code Structure

The code has been planned and divided in several modularized parts, so that
each part can be separated from the others with ease. ITAndroids Soccer 3D
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used to work with a Base made from Magma Offenburg and ITAndroids Soccer
2D works with Agent2D. In this way, our current code structure was heavily
influenced by those works.

2.1 Communication

It is the layer that directly connects with the server, in order to receive messages
and send messages to it. This layer receives and sends a string as described in
the server’s website. It uses a socket to implement the communication, receiving
a message that contains the information from the server.

2.2 Perception

This layer receives the string from Communication, and converts the string into
a tree, parsing it. The layer then iterates over the created tree and creates new
objects from it, so that the agent can have new information each new loop. The
created objects come in the form of perceptors and each perceptor is as described
in the server’s website.

2.3 Modeling

Modeling basically models the world state. Not only that, it also models situ-
ations, e.g. in whether the agent has fallen. It uses the perceptors created in
perception to update its models, getting the relative position of field landmarks
to find it’s positions, and acelerometer data to see if the agent has fallen.

Agent Model The Agent model is the part of the code that models specific
agent modes. It calculates the transformation matrices, in order to change the
coordinate system from the camera to a ground coordinate system, using robot
joints and making simplifications on the system.

World Model The World Model is responsible for modeling parameters like
game state, time, and position, so that these information can be used by Decision
Making. It runs the Localization algorithm in order to estimate the robot’s
position.

2.4 Decision Making

Decision Making is a layer that divides each robot by decision makers. It consists
Behavior and Decision Maker. One agent cannot change its decision maker, but,
that decision maker must be able to integrate all the possible behavior the agent
has available, e.g. a Soccer agent receives a SoccerDecisionMaker, and a goalie
receives a GoalieDecisionMaker. Those decision makers dictate the movements
the agent should take in order to successfully follow a determined strategy.
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Behavior is a set of what the agent can to in order to change its own state.
Behavior is a set of instructions that goes from high to low level of abstraction,
in order to make the agent follow it’s strategy. Each behavior can use other
behaviors for a more abstract level of problem solving.

The layer has two parts, a part that is a data structure called BehaviorFac-
tory, and a structure called Behavior. A BehaviorFactory stores all behaviors
within itself, and each behavior has access to all other behaviors in the Behavior
Factory.

2.5 Control

Control is the layer that gets the requests from behavior and changes it into
more concrete things. For example, it takes a walk request created from one of
the behaviors, and converts it into joints positions.

2.6 Action

Action is a layer that converts all the information the agent has created and
wants to send to the server into a string, in a way the server can recognize.

3 Localization

Using complex strategies in robot soccer requires that the agent knows its global
position in the soccer field. The problem of having a mobile robot estimates its
pose with respect to a global coordinates system is termed Localization in the
robotics community. To solve this problem, the standard approach involves us-
ing a Bayes filter, which iteratively incorporates sensors’ measurements and the
robot’s actions to construct a probabilistic estimate of the robot position. Since
implementing this technique directly is not feasible computationally, approxi-
mated techniques, such as the Kalman filter [12] or the particle filter [13], are
often employed. We decided to use Monte Carlo localization (MCL) [6], which
uses a particle filter to solve the Localization problem, because it is one the most
efficient methods [11] and some teams in 3D Soccer Simulation have successfully
used this technique [4, 5].

Our MCL implementation was greatly inspired by the work explained in [7].
Each particle mantains a pose estimate represented by a 3-dimensional vector
x = [x, y, ψ]

T , where x and y are global field coordinates and ψ is the horizontal
angle the torso of the robot is heading. We use a bootstrap particle filter with
resampling step [14].

In the sensing phase, we currently landmarks (flags and goalposts) observa-
tions and line observations. Our landmark observation model consider gaussian
noises corrupting the horizontal distance and horizontal angle measurements
with covariances σ2

d and σ2
ψ, respectively. Furthermore, we consider that land-

marks observations are independent of each other. Therefore, a suitable rule for
updating the particles’ weights is:
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where w(i)
k is the weight of the i-th particle in the k-th sampling time, dj is

the measured horizontal distance between the robot and the j-th landmark, d(i)j
is the horizontal distance between the robot and the j-th landmark considering
the current i-th particle’s position, ψ̂(i)

j is the measured horizontal angle between
the j-th landmark and the robot’s heading, ψ(i)

j is the expected horizontal angle
between the j-th landmark and the robot given the i-th particle position. To
determine adequate values for σd and σψ, we started with measurement covari-
ances presented in Simspark’s documentation and finely tuned these values by
hand. We do not execute a sensing phase when no vision update is present (note
that Simspark sends vision updates only every 3 cycles).

For motion update, we use odometry information given by our walking en-
gine, which gives the torso displacement vector∆dk = [∆xk, ∆yk, ∆ψk]

T relative
to the local torso coordinates frame of the previous time step. At first, slipping
was making odometry and actual movement differ too much, especially at high
walking speeds. Simply scaling each channel proved effectively in solving this:
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Thus, d′ was the value of displacement effectively used for motion update.
The parameters α, β and γ were manually tuned by comparing the evolution of
the robot’s position and its estimate in Roboviz while the robot was walking.
relative to the robot’s coordinates frame) and manually tweaking α, β and γ.
Then, we update the position of each particle i using:
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incorporate pro-

cess noise. These covariances were also manually tweaked. We execute a motion
phase every cycle, then we naturally run more motion than sensing phases.

To reduce particle deprivation, we use a resampling step after sensing and
motion phases [14]. Given that resampling algorithms may be computationally
expensive, we use the O(N) algorithm shown in [11], where N is the number of
particles used.

To avoid the kidnapped robot problem, which happens in the 3D Soccer Sim-
ulation domain when the server teleports the agent, we used the strategy known
as Adaptive-MCL [8, 11], which resets particles based on a heuristic estimate
of how bad localized the agent is. Instead of distributing the resetted particles
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randomly in the soccer field [7], we use the current vision observations to better
reset the particles [8].

Given that two landmarks observations, we may estimate where the robot
is as shown in Figure 1. Note that we end with two hypotheses, which may
be chosen at random. In our case, one of them will usually falls outside of the
soccer field, thus may be discarded. If more than two landmarks are seen in the
current cycle, two landmarks are chosen at random for each particle which is
being resetted. Moreover, we add gaussian noises to the landmarks’ observations
before applying this resetting process to better spread the resetted particles.

Fig. 1. Determining the agent’s localization using two landmarks observation.

Finally, the agent’s position estimate is determined by a weighted average
of the particles’ positions. For future work, we expect to determine the parame-
ters using experiments or optimization techniques instead of relying on manual
tweaking.

4 Motion Control

For walking, we use the ZMP-based omnidirectional walking engine described
in [9]. In general terms, it follows the flux presented in Fig. 2. The input to the
algorithm is the desired velocity v = [vx, vy, vψ]

T with respect to the robot’s
local coordinate system. At the beginning of a new step, poses for the torso and
the swing foot are selected for achieving the expected displacement at the end
of the step. So, a trajectory for the center of mass (CoM) to follow a reference
Zero Moment Point (ZMP) trajectory is computed. The trajectory of the swing
foot is obtained by interpolating between the initial and final poses of this foot.
Finally, joints angles are calculated through Inverse Kinematics (IK) considering
the poses of the support and swing feet. Note that the module “Next Torso and
Swing Poses Selector” is called once for step, while the others are executed at
the update rate of the joints.

Our step planner selects torso and feet poses to make the robot follows an
omnidirectional model while respecting self-collision and leg reachability con-
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Fig. 2. Walking Engine overview.

straints. To reason about the robot dynamics, we approximate it using the 3D
Linear Inverted Pendulum Model (3D-LIPM) [1]:

xZMP = xCoM −
zCoM
g

ẍCoM (4)

where xZMP = [xZMP , yZMP ]
T is the ZMP position, xCoM = [xCoM , yCoM ]T is

the CoM position, zCoM is the CoM height, and g is the acceleration of gravity.
The ZMP is kept at the center of the support foot during single support and
moves from the current support foot to the next one during double support. We
also use the torso’s angular velocities measured by the gyrometer to stabilize the
walk. This feedback strategy has proven quite effective, especially when walking
on artificial grass.

For kicking, we first considered that it is a movement where the biped starts
in a stand position, kicks the ball and returns to the same stand position. Given
this description, we divided the motion into 4 phases: a) the ZMP is moved to
the center of the support foot; b) the robot kicks the ball; c) the kicking foot
is placed back on the ground; d) the ZMP goes back to the center of the torso.
To balance the biped during kicking, we employ the same ZMP-based algorithm
used for walking. For the getting up movements, we are using the original Robotis
OP2 keyframes with slight modifications to make them work on artificial grass.
For more information about our keyframe movements framework, please refer to
[10].

5 Dynamic Role Assignment

5.1 Positioning Model

The Delaunay Triangulation algorithm calculate our player’s positions and gener-
ate a formation set of agents for every single position of the ball. These positions
serve as reference points for an agent to where they should be if there is not any
enemy in a dangerous position just according to the ball‘s position in that mo-
ment. The Dynamic Role Assignment idea is that the agents can communicate



ITAndroids Soccer 3D Team Description Paper 2018 7

themselves, decide the best lineup in that moment and assign the Delaunay Tri-
angulation positions to the team, one for each agent. And do it all dynamically,
sending and receiving messages in every communication cycle.

The lineup consists on eleven positions and each agent, using the data re-
ceived in the World Model, is able to determine which agent should be assigned
to each Delaunay Triangulation position based on the agents‘ position. Each po-
sition is assigned to a number 1 - 11, just as the agent‘s uniform number. So, the
agent generates an array and assigns the number of the Delaunay Triangulation
position to each player in its team.

5.2 Communication between Agents

The objective is send a vector containing each position assigned to each other
agent in the team. Each agent can send and receive messages from the server
in every cycle of 20 ms, with the message‘s size limited to 20 bytes (160 bits).
The problem is that every integer occupies 4 bytes, and the team has 11 players.
So, the vector would have occupy 11*4 = 44 bytes of memory, a lot more than
the limit. The solution used was to use the base64 ascii encoder, a compression
message encoder that creates a bijection between the vector and other structure
which occupies less memory. Then, the agents would receive the encoded mes-
sage and, using the same bijection, be able to decode and receive the message
vector. The method proved itself to be very efficient, reducing the size of the
role assignment vector form the original 44 bytes to only around 110 - 120 bits.

5.3 Voting System

When the agents have all sent their respective role assignment vectors to each
other (They may differ from agent to since their perception is different), they ac-
knowledge the position which was assigned more times to each respective agent.
Then, the team’s role assignment vector would be filled based on the assign-
ments. Then, the final role assignment vector would be generated based on these
votes, and each player verify the position he should go.

5.4 Marking System

The marking system is a sequential process used to mark opponents agents who
are offensively dangerous during the match.

The System performs three steps: it decides the players that will be marked,
defines roles to mark these players and, finally, uses the Role Assignment system
to designate agents for those defined roles.

To decide which opponents are to be scored, a heuristic method is used based
on the following conditions:

1. Opponent is close enough to take a shot on goal
2. Opponent is not the closest opponent to the ball.
3. Opponent is not too close to the ball
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4. Opponent is not too far behind the ball

After that, a set of formation roles must be selected to mark the chosen
opponents. For this, marking roles positions are calculated as the position 1.5
meters from a marked opponent along the line which connects that opponent
to the center of our goal. The formation positions to be replaced are the closest
to each marking position, and their selection is done by evaluating each one for
every replacement, which is a suboptimal solution. In the future, we plan to
use the Hungarian algorithm, which calculates the minimum sum of distances
between the previous forming positions and the marking positions.

6 Strategy and Decision Making

6.1 Set Plays

As in a soccer game, during a simulated game there are situations where the ball
is stopped. When this happens, the team with the ball has a certain amount of
time to make a move, while the other team can’t approach more than a certain
distance from the ball. For some of these situations were formulated different Set
Plays, they were: Own Goal Kick, Opponent Goal Kick and Own Corner Kick.
We plan to implement new Set Plays for each Dead Ball situation in the game.

6.2 Robot Navigation

Planning consists of finding a sequence of actions that transforms some initial
state into some desired goal state.

Potential Field This robot navigation method applies to each field’s point
a numerical value that corresponds to the potential caused by external agents.
Therefore, is possible to know which points should be avoided and which point is
the goal. We have several advantages of using Potential Fields to robot navigation
[15]. First, it’s easy to implement and visualize, and the resulting behavior of the
robot is therefore easy to predict; furthermore, they support parallelism - each
field is independent of the others and may be implemented as general software.

In our case, the function calculateDirection() receives our current position
and a vector with all objects (players, the ball, the goal, etc) in the soccer field.
Then, we calculate the potential that each object in this vector causes in a
specific point of the field (our position). We can calculate this using the concept
of potential like a constant divided by a power of the distance d between the
object and position.

As we are interested in a direction, our function calculates the potential
associated with each direction (horizontal and vertical). Potential is a scalar
quantity, therefore we can add directly the potential caused by each object in
the vector. So, our function calculates each potential and sum them all. After
that, we can calculate the desired direction using this formula:
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θ = arctan

(
Vy
Vx

)
(5)

As you can see, our function calculateDirection() returns the angle (in
radians) between the horizontal direction and desired direction, that points to
the goal and avoids the obstacles.

6.3 Walk Optimization

ITAndroids Soccer 3D started to develop optimization tasks focusing on walk-
ing’s movement. The purpose of this activity is improve stability and velocity of
the movement, based in the fact that previous work on this area reported great
results [2]. The team developed three tasks and optimized Omndirectional ZMP
parameters and Navigation parameters. The three tasks are described below:

Sprint Task In this task, the robot runs straightforward. The fitness func-
tion takes in consideration the maximum distance traveled by the agent (as a
"positive reinforcement") and if the agent has fallen down (as "negative"). The
purpose of this task is just improve speed in the scenario of agent travelling to
a directed target, without contact with another agent or the ball.

"GoToBall" Task This task was developed in [3] and basically the agent go
to the ball and conduct it in the

The fitness function takes in consideration the distance between the ball and
the goal and if the agent has fallen down (both as "negative reinforcement").
The purpose of this task is improve stability and speed in the scenario of agent
conduction the ball towards the goal.

"GoToTarget" Task This task was based on the main task developed in [2]
and is divided in three parts. In the first, a target is set 5 meters from the robot,
in a random direction. After a specified time, the process is repeated. This loop
of generate a random target and the agent run towards this targets occurs several
times, with different distances from the agent (and different times). The fitness
function takes in consideration the time that the agent used for reach the target
and the distance used. Furthermore, the task also considered if the robot has
fallen down in each loop. The purpose of this task is improve stability simulating
the rapidly change of direction in the soccer game context.

6.4 Walk State Machine

With the optimization of walking parameters it became necessary to re-plan the
movement. In this way, a new decision-making was implemented according to
the walking situation. Are they: sprint, when the agent walks without the ball;
conduct, when the agent walks with the ball; turn, when the agent cross curve
paths; and circle, when the agent circulates the ball.
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7 Tensor Flow

We have integrated the Tensorflow C++ API into our code. At this moment,
it’s possible to load a freezed graph (a graphdef from Keras, for example) and
perform a forward propagation. We’ve tested with a simple model of particle
filtering based on a denoising autoencoder (however, this model perfomed poorly
on simspark enviroment). As future work, it’s planned to develop the backward
propagation, aiming to tasks that need online learning.

8 Statistic tool

A major issue beneath complex dynamics virtual environments such as in 3D
soccer matches simulations is the obtainment of optimal parameters to be as-
signed to each player in several game events. For example, a player may have
fallen to the ground in a certain position; as long as its physical constants differ
deppending on whether its back was up or down, the parameters involved in the
movement of getting up in the lowest time may differ. Another game scenario
might be the one in which two opponent players rush towards the ball in order
to kick it in the direction of one of its allies; while the running takes place, the
employed parameters must provide an efficient speed in an attempt to arrive the
earliest to the ball; however, as a player gets close enough to the ball, it should
also focus on kicking with a reasonable strength and in the right position so that
the ball moves the way it was intended: that requires even more caution with
respect to balance and footstep planning.

Traditionally, what has been done in Soccer3D to generate optimal sets of
such parameters is running optimization algorithms through scripts of trainers.
These trainers simulate game-like conditions, e.g. running, kicking, getting up,
etc., and serve the purpose of enhancing specific skills in players. However, there
are certain weaknesses in trainers that, at least partially, compromise their per-
formance: one of them is a consequence of their biased nature – once a trainer
allots a sequence of tasks for a player to perform, the optimization algorithm
will find out good parameters for the very tasks that were assigned, and there
is a chance of obtaining parameters that are unstable for various other game
conditions. Another critical difficulty refers to the greater complexity and mul-
tiplayer interaction that take place during actual matches. Given the relevance
of these dynamics, their influence needs to be accounted for when calibrating
player parameters, and the only way through that is effectively simulating ac-
tual matches.

However, the relatively slow motion of the soccer players results in a static
game flow, and relevant game information happens very little often. Besides,
matches’ durations are lengthy, so that simulations activated manually by the
team members require a considerable amount of time. Therefore, not only is this
approach time consuming and represent a tedious experience to the members; it
is also highly non-efficient, demanding several cycles of activation of the trainers
and optimization servers, not to say all the following-along of matches led by
the members for every set of parameters that are willing to be tested.
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A better approach that was considered by the the Soccer3D team on this
semester was the implementation of an automatic game analysis tool, that re-
trieves from the simulated matches all the relevant data required to have a deeper
outlook of the set of parameters being tested. In order for this automatic anal-
ysis to be accomplished, two essential tools were conceived: a league manage
tool, whose main purpose is to generate game logs containing all the match data
available; and a statistical tool, which is in charge of processing and filtering the
data generated by the league manager, and from that displaying information
that is more easily understandable to the user.

With respect to the statistical tool, the first implementation yet ready to
use is the total number of goals scored by each of the teams, as well as the
time instants that every goal was scored. The next step still to be developed
is the determination of the ball possession rate attributed to each opponent
team. Further extensions of the statistical tool may include the number of fouls
committed, the number of kicks performed and the number of times the players
of a given team have fallen to the ground during the game.

9 Conclusions and Future Work

It’s been saw that, even though we remade our code structure, there is much
more to do. During our last competition, Robocup 2017, was clear that our team
defense was acceptable. However, our attack was well below expected. Now that
our movements have been optimized and we can actually advance much more
through the field, we will focus on developing attack strategies to improve the
goal balance, as well as the statistical tools necessary for a better knowledge
about the effects of those changes.
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